50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Delta-like 4 is indispensable in thymic environment specific for T cell development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The thymic microenvironment is required for T cell development in vivo. However, in vitro studies have shown that when hematopoietic progenitors acquire Notch signaling via Delta-like (Dll)1 or Dll4, they differentiate into the T cell lineage in the absence of a thymic microenvironment. It is not clear, however, whether the thymus supports T cell development specifically by providing Notch signaling. To address this issue, we generated mice with a loxP-flanked allele of Dll4 and induced gene deletion specifically in thymic epithelial cells (TECs). In the thymus of mutant mice, the expression of Dll4 was abrogated on the epithelium, and the proportion of hematopoietic cells bearing the intracellular fragment of Notch1 (ICN1) was markedly decreased. Corresponding to this, CD4 CD8 double-positive or single-positive T cells were not detected in the thymus. Further analysis showed that the double-negative cell fraction was lacking T cell progenitors. The enforced expression of ICN1 in hematopoietic progenitors restored thymic T cell differentiation, even when the TECs were deficient in Dll4. These results indicate that the thymus-specific environment for determining T cell fate indispensably requires Dll4 expression to induce Notch signaling in the thymic immigrant cells.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations in T-cell antigen receptor genes alpha and beta block thymocyte development at different stages.

          Analysis of mice carrying mutant T-cell antigen receptor (TCR) genes indicates that TCR-beta gene rearrangement or expression is critical for the differentiation of CD4-CD8- thymocytes to CD4+CD8+ thymocytes, as well as for the expansion of the pool of CD4+CD8+ cells. TCR-alpha is irrelevant in these developmental processes. The development of gamma delta T cells does not depend on either TCR-alpha or TCR-beta.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision.

            The transcription factor recombination signal binding protein-J (RBP-J) functions immediately downstream of the cell surface receptor Notch and mediates transcriptional activation by the intracellular domain of all four kinds of Notch receptors. To investigate the function of RBP-J, we introduced loxP sites on both sides of the RBP-J exons encoding its DNA binding domain. Mice bearing the loxP-flanked RBP-J alleles, RBP-J(f/f), were mated with Mx-Cre transgenic mice and deletional mutation of the RBP-J gene in adult mice was induced by injection of the IFN-alpha inducer poly(I)-poly(C). Here we show that inactivation of RBP-J in bone marrow resulted in a block of T cell development at the earliest stage and increase of B cell development in the thymus. Lymphoid progenitors deficient in RBP-J differentiate into B but not T cells when cultured in 2'-deoxyguanosine-treated fetal thymic lobes by hanging-drop fetal thymus organ culture. Competitive repopulation assay also revealed cell autonomous deficiency of T cell development from bone marrow of RBP-J knockout mouse. Myeloid and B lineage differentiation appears normal in the bone marrow of RBP-J-inactivated mice. These results suggest that RBP-J, probably by mediating Notch signaling, controls T versus B cell fate decision in lymphoid progenitors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision.

              The Cre/loxP system has become an important tool in designing postintegrational switch mechanisms for transgenes in mice. The power and spectrum of application of this system depends on transgenic mouse lines that provide Cre recombinase activity with a defined cell type-, tissue-, or developmental stage-specificity. We have developed a novel mouse line that acts as a Cre reporter. The mice, designated Z/EG (lacZ/EGFP), express lacZ throughout embryonic development and adult stages. Cre excision, however, removes the lacZ gene, which activates expression of the second reporter, enhanced green fluorescent protein. We have found that the double-reporter Z/EG line is able to indicate the occurrence of Cre excision from early embryonic to adult lineages. The advantage of the Z/EG line is that Cre-mediated excision can be monitored in live samples and that live cells with Cre-mediated excision can be isolated using a single-step FACS. It will be a valuable reagent for the increasing number of investigators taking advantage of the powerful tools provided by the Cre/loxP site-specific recombinase system.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                27 October 2008
                : 205
                : 11
                : 2507-2513
                Affiliations
                [1 ]Department of Immunology and Research Center for Embryogenesis and Organogenesis, [2 ]Division of Hematopoiesis, Research Center for Regenerative Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
                [3 ]UCL Institute of Ophthalmology, Laboratory for Translational Vision Research, London EC1V 9EL, England, UK
                [4 ]Laboratory of Pediatric Immunology, Center for Biomedicine, Department of Clinical-Biological Sciences, University of Basel, 4058 Basel, Switzerland
                Author notes

                CORRESPONDENCE Katsuto Hozumi: hozumi@ 123456is.icc.u-tokai.ac.jp

                Article
                20080134
                10.1084/jem.20080134
                2571926
                18824583
                b50f53a4-e641-4b7f-b26a-88c730cef9e4
                © 2008 Hozumi et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jem.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 18 January 2008
                : 6 August 2008
                Categories
                Brief Definitive Reports
                Brief Definitive Report

                Medicine
                Medicine

                Comments

                Comment on this article