13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanisms and rejuvenation strategies for aged hematopoietic stem cells

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hematopoietic stem cell (HSC) aging, which is accompanied by reduced self-renewal ability, impaired homing, myeloid-biased differentiation, and other defects in hematopoietic reconstitution function, is a hot topic in stem cell research. Although the number of HSCs increases with age in both mice and humans, the increase cannot compensate for the defects of aged HSCs. Many studies have been performed from various perspectives to illustrate the potential mechanisms of HSC aging; however, the detailed molecular mechanisms remain unclear, blocking further exploration of aged HSC rejuvenation. To determine how aged HSC defects occur, we provide an overview of differences in the hallmarks, signaling pathways, and epigenetics of young and aged HSCs as well as of the bone marrow niche wherein HSCs reside. Notably, we summarize the very recent studies which dissect HSC aging at the single-cell level. Furthermore, we review the promising strategies for rejuvenating aged HSC functions. Considering that the incidence of many hematological malignancies is strongly associated with age, our HSC aging review delineates the association between functional changes and molecular mechanisms and may have significant clinical relevance.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Cellular senescence in aging and age-related disease: from mechanisms to therapy.

          Cellular senescence, a process that imposes permanent proliferative arrest on cells in response to various stressors, has emerged as a potentially important contributor to aging and age-related disease, and it is an attractive target for therapeutic exploitation. A wealth of information about senescence in cultured cells has been acquired over the past half century; however, senescence in living organisms is poorly understood, largely because of technical limitations relating to the identification and characterization of senescent cells in tissues and organs. Furthermore, newly recognized beneficial signaling functions of senescence suggest that indiscriminately targeting senescent cells or modulating their secretome for anti-aging therapy may have negative consequences. Here we discuss current progress and challenges in understanding the stressors that induce senescence in vivo, the cell types that are prone to senesce, and the autocrine and paracrine properties of senescent cells in the contexts of aging and age-related diseases as well as disease therapy.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice.

            As human lifespan increases, a greater fraction of the population is suffering from age-related cognitive impairments, making it important to elucidate a means to combat the effects of aging. Here we report that exposure of an aged animal to young blood can counteract and reverse pre-existing effects of brain aging at the molecular, structural, functional and cognitive level. Genome-wide microarray analysis of heterochronic parabionts--in which circulatory systems of young and aged animals are connected--identified synaptic plasticity-related transcriptional changes in the hippocampus of aged mice. Dendritic spine density of mature neurons increased and synaptic plasticity improved in the hippocampus of aged heterochronic parabionts. At the cognitive level, systemic administration of young blood plasma into aged mice improved age-related cognitive impairments in both contextual fear conditioning and spatial learning and memory. Structural and cognitive enhancements elicited by exposure to young blood are mediated, in part, by activation of the cyclic AMP response element binding protein (Creb) in the aged hippocampus. Our data indicate that exposure of aged mice to young blood late in life is capable of rejuvenating synaptic plasticity and improving cognitive function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells.

              Hematopoietic stem cells (HSCs) undergo self-renewing cell divisions and maintain blood production for their lifetime. Appropriate control of HSC self-renewal is crucial for the maintenance of hematopoietic homeostasis. Here we show that activation of p38 MAPK in response to increasing levels of reactive oxygen species (ROS) limits the lifespan of HSCs in vivo. In Atm(-/-) mice, elevation of ROS levels induces HSC-specific phosphorylation of p38 MAPK accompanied by a defect in the maintenance of HSC quiescence. Inhibition of p38 MAPK rescued ROS-induced defects in HSC repopulating capacity and in the maintenance of HSC quiescence, indicating that the ROS-p38 MAPK pathway contributes to exhaustion of the stem cell population. Furthermore, prolonged treatment with an antioxidant or an inhibitor of p38 MAPK extended the lifespan of HSCs from wild-type mice in serial transplantation experiments. These data show that inactivation of p38 MAPK protects HSCs against loss of self-renewal capacity. Our characterization of molecular mechanisms that limit HSC lifespan may lead to beneficial therapies for human disease.
                Bookmark

                Author and article information

                Contributors
                huanghe@zju.edu.cn
                Journal
                J Hematol Oncol
                J Hematol Oncol
                Journal of Hematology & Oncology
                BioMed Central (London )
                1756-8722
                6 April 2020
                6 April 2020
                2020
                : 13
                : 31
                Affiliations
                [1 ]GRID grid.13402.34, ISNI 0000 0004 1759 700X, Bone Marrow Transplantation Center, The First Affiliated Hospital, , Zhejiang University School of Medicine, ; Hangzhou, Zhejiang People’s Republic of China
                [2 ]GRID grid.13402.34, ISNI 0000 0004 1759 700X, Institute of Hematology, , Zhejiang University, ; Hangzhou Zhejiang, People’s Republic of China
                [3 ]Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang People’s Republic of China
                Article
                864
                10.1186/s13045-020-00864-8
                7137344
                32252797
                b510888c-9bff-465a-b3fd-c20edc5b8187
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 13 November 2019
                : 27 March 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81900176
                Award ID: 81770130
                Award ID: 81730008
                Award ID: 81870080
                Award Recipient :
                Funded by: National Natural Science Foundation of China
                Award ID: 91949115
                Award Recipient :
                Funded by: National Key R&D Program of China, Stem Cell and Translation Research
                Award ID: 2018YFA0109300
                Award Recipient :
                Funded by: Zhejiang Province Science Foundation for Distinguished Young Scholars
                Award ID: LR19H080001
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2020

                Oncology & Radiotherapy
                hematopoietic stem cells,aging,single-cell sequencing,epigenetics,rejuvenation

                Comments

                Comment on this article