20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The β-catenin/CBP-antagonist ICG-001 inhibits pediatric glioma tumorigenicity in a Wnt-independent manner

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pediatric high-grade gliomas (pedHGG) belong to the most aggressive cancers in children with a poor prognosis due to a lack of efficient therapeutic strategies. The β-catenin/Wnt-signaling pathway was shown to hold promising potential as a treatment target in adult high-grade gliomas by abrogating tumor cell invasion and the acquisition of stem cell-like characteristics. Since pedHGG differ from their adult counterparts in genetically and biologically we aimed to investigate the effects of β-catenin/Wnt-signaling pathway-inhibition by the β-catenin/CBP antagonist ICG-001 in pedHGG cell lines. In contrast to adult HGG, pedHGG cells displayed minimal detectable canonical Wnt-signaling activity. Nevertheless, low doses of ICG-001 inhibited cell migration/invasion, tumorsphere- and colony formation, proliferation in vitro as well as tumor growth in vivo/ovo, suggesting that ICG-001 affects pedHGG tumor cell characteristics independent of β-catenin/Wnt-signaling. RNA-sequencing analyses support a Wnt/β-catenin-independent effect of ICG-001 on target gene transcription, revealing strong effects on genes involved in cellular metabolic/biosynthetic processes and cell cycle progression. Among these, high mRNA expression of cell cycle regulator JDP2 was found to confer a better prognosis for pedHGG patients. In conclusion, ICG-001 might offer an effective treatment option for pedHGG patients functioning to regulate cell phenotype and gene expression programs in absence of Wnt/β-catenin signaling-activity.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Wnt/β-Catenin/Tcf Signaling Induces the Transcription of Axin2, a Negative Regulator of the Signaling Pathway

          Axin2/Conductin/Axil and its ortholog Axin are negative regulators of the Wnt signaling pathway, which promote the phosphorylation and degradation of β-catenin. While Axin is expressed ubiquitously, Axin2 mRNA was seen in a restricted pattern during mouse embryogenesis and organogenesis. Because many sites of Axin2 expression overlapped with those of several Wnt genes, we tested whether Axin2 was induced by Wnt signaling. Endogenous Axin2 mRNA and protein expression could be rapidly induced by activation of the Wnt pathway, and Axin2 reporter constructs, containing a 5.6-kb DNA fragment including the promoter and first intron, were also induced. This genomic region contains eight Tcf/LEF consensus binding sites, five of which are located within longer, highly conserved noncoding sequences. The mutation or deletion of these Tcf/LEF sites greatly diminished induction by β-catenin, and mutation of the Tcf/LEF site T2 abolished protein binding in an electrophoretic mobility shift assay. These results strongly suggest that Axin2 is a direct target of the Wnt pathway, mediated through Tcf/LEF factors. The 5.6-kb genomic sequence was sufficient to direct the tissue-specific expression of d2EGFP in transgenic embryos, consistent with a role for the Tcf/LEF sites and surrounding conserved sequences in the in vivo expression pattern of Axin2 . Our results suggest that Axin2 participates in a negative feedback loop, which could serve to limit the duration or intensity of a Wnt-initiated signal.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wnt signaling in cancer.

            Aberrant regulation of the Wnt signaling pathway is a prevalent theme in cancer biology. From the earliest observation that Wnt overexpression could lead to malignant transformation of mouse mammary tissue to the most recent genetic discoveries gleaned from tumor genome sequencing, the Wnt pathway continues to evolve as a central mechanism in cancer biology. This article summarizes the evidence supporting a role for Wnt signaling in human cancer. This includes a review of the genetic mutations affecting Wnt pathway components, as well as some of epigenetic mechanisms that alter expression of genes relevant to Wnt. I also highlight some research on the cooperativity of Wnt with other signaling pathways in cancer. Finally, some emphasis is placed on laboratory research that provides a proof of concept for the therapeutic inhibition of Wnt signaling in cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected].

              Inherited and somatic mutations in the adenomatous polyposis coli occur in most colon cancers, leading to activation of beta-catenin-responsive genes. To identify small molecule antagonists of this pathway, we challenged transformed colorectal cells with a secondary structure-templated chemical library, looking for compounds that inhibit a beta-catenin-responsive reporter. We identified ICG-001, a small molecule that down-regulates beta-catenin/T cell factor signaling by specifically binding to cyclic AMP response element-binding protein. ICG-001 selectively induces apoptosis in transformed cells but not in normal colon cells, reduces in vitro growth of colon carcinoma cells, and is efficacious in the Min mouse and nude mouse xenograft models of colon cancer.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                18 April 2017
                6 March 2017
                : 8
                : 16
                : 27300-27313
                Affiliations
                1 Division of Pediatric Hematology and Oncology, Department of Child and Adolescent Health, University Medical Center Goettingen, Goettingen, Germany
                2 Institute of Cellular and Molecular Immunology, University Medical Center Goettingen, Goettingen, Germany
                3 Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany
                4 Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
                5 Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
                6 Department of General, Visceral, and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
                Author notes
                Correspondence to: Maria Wiese, maria.wiese@ 123456med.uni-goettingen.de
                Article
                15934
                10.18632/oncotarget.15934
                5432336
                28460484
                b51fcf03-79a0-42ec-acad-fd0ef483c9de
                Copyright: © 2017 Wiese et al.

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 14 July 2016
                : 20 February 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                icg-001,pediatric high-grade glioma (pedhgg),wnt/β-catenin signaling,creb binding protein (cbp),cell cycle

                Comments

                Comment on this article