Blog
About

32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wnt5a promotes ewing sarcoma cell migration through upregulating CXCR4 expression

      , 1 , 2 , 1 , 1

      BMC Cancer

      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          As one of the malignant tumors most often affecting children and young adults, Ewing sarcoma (ES) is characterized by early metastasis contributing to unfavorable prognosis. However, the molecular mechanisms responsible for ES metastasis remain poorly understood. In this study, we aimed to explore whether Wnt5a, a putative pro-metastatic factor, plays a role in ES metastasis.

          Methods

          Expression of Wnt5a and CXCR4 was determined by real-time PCR or Western blot in 15 ES specimens and 4 ES cell lines, A-673, RD-ES, SK-N-MC and SK-ES-1. Expression of Wnt antagonists, SFRP1, SFRP2 and SFRP5, and some components in noncanonical Wnt pathway (p-JNK, p-cJUN and p-PKC) was also analyzed in this study. Methylation status of SFRP1, SFRP2 and SFRP5 was detected by Methylation-specific PCR (MSP). Wnt5a shRNA and pcDNA3.1 SFRP5 vector were used to abrogate Wnt5a expression and overexpress SFRP5 in ES cells, respectively.

          Results

          Wnt5a expression was positively correlated with CXCR4 expression in ES specimens. Levels of both Wnt5a mRNA and CXCR4 mRNA were significantly higher in specimens from ES patients with metastasis at diagnosis compared with specimens from those without metastasis. Recombinant Wnt5a enhanced CXCR4 expression in ES cells, which was accompanied by increased ES cell migration, whereas Wnt5a shRNA has opposite effects. SFRP5 was methylated and silenced in ES cells, and both recombinant SFRP5 and pcDNA3.1 SFRP5 vector suppressed CXCR4 expression as well as ES cell migration. Wnt5a shRNA and recombinant SFRP5 inhibited phosphorylation of JNK and cJUN, and JNK inhibitor also reduced CXCR4 expression and cell migration in ES cells.

          Conclusions

          Wnt5a increases ES cell migration via upregulating CXCR4 expression in the absence of Wnt antagonist SFRP5, suggesting that Wnt5a overexpression and SFRP5 deficiency may jointly promote ES metastasis.

          Related collections

          Most cited references 21

          • Record: found
          • Abstract: found
          • Article: not found

          Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma.

          Gene expression profiling identified human melanoma cells demonstrating increased cell motility and invasiveness. The gene WNT5A best determined in vitro invasive behavior. Melanoma cells were transfected with vectors constitutively overexpressing Wnt5a. Consistent changes included actin reorganization and increased cell adhesion. No increase in beta-catenin expression or nuclear translocation was observed. There was, however, a dramatic increase in activated PKC. In direct correlation with Wnt5a expression and PKC activation, there was an increase in melanoma cell invasion. Blocking this pathway using antibodies to Frizzled-5, the receptor for Wnt5a, inhibited PKC activity and cellular invasion. Furthermore, Wnt5a expression in human melanoma biopsies directly correlated to increasing tumor grade. These observations support a role for Wnt5a in human melanoma progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition.

            We have shown that Wnt5A increases the motility of melanoma cells. To explore cellular pathways involving Wnt5A, we compared gain-of-function (WNT5A stable transfectants) versus loss-of-function (siRNA knockdown) of WNT5A by microarray analysis. Increasing WNT5A suppressed the expression of several genes, which were re-expressed after small interference RNA-mediated knockdown of WNT5A. Genes affected by WNT5A include KISS-1, a metastasis suppressor, and CD44, involved in tumor cell homing during metastasis. This could be validated at the protein level using both small interference RNA and recombinant Wnt5A (rWnt5A). Among the genes up-regulated by WNT5A was the gene vimentin, associated with an epithelial to mesenchymal transition (EMT), which involves decreases in E-cadherin, due to up-regulation of the transcriptional repressor, Snail. rWnt5A treatment increases Snail and vimentin expression, and decreases E-cadherin, even in the presence of dominant-negativeTCF4, suggesting that this activation is independent of Wnt/beta-catenin signaling. Because Wnt5A can signal via protein kinase C (PKC), the role of PKC in Wnt5A-mediated motility and EMT was also assessed using PKC inhibition and activation studies. Treating cells expressing low levels of Wnt5A with phorbol ester increased Snail expression inhibiting PKC in cells expressing high levels of Wnt5A decreased Snail. Furthermore, inhibition of PKC before Wnt5A treatment blocked Snail expression, implying that Wnt5A can potentiate melanoma metastasis via the induction of EMT in a PKC-dependent manner.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity.

              Adipose tissue secretes proteins referred to as adipokines, many of which promote inflammation and disrupt glucose homeostasis. Here we show that secreted frizzled-related protein 5 (Sfrp5), a protein previously linked to the Wnt signaling pathway, is an anti-inflammatory adipokine whose expression is perturbed in models of obesity and type 2 diabetes. Sfrp5-deficient mice fed a high-calorie diet developed severe glucose intolerance and hepatic steatosis, and their adipose tissue showed an accumulation of activated macrophages that was associated with activation of the c-Jun N-terminal kinase signaling pathway. Adenovirus-mediated delivery of Sfrp5 to mouse models of obesity ameliorated glucose intolerance and hepatic steatosis. Thus, in the setting of obesity, Sfrp5 secretion by adipocytes exerts salutary effects on metabolic dysfunction by controlling inflammatory cells within adipose tissue.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2012
                18 October 2012
                : 12
                : 480
                Affiliations
                [1 ]Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
                [2 ]Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
                Article
                1471-2407-12-480
                10.1186/1471-2407-12-480
                3517772
                23075330
                Copyright ©2012 Zhe et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research Article

                Oncology & Radiotherapy

                Comments

                Comment on this article