20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanistic Insight into Salt Tolerance of Acacia auriculiformis: The Importance of Ion Selectivity, Osmoprotection, Tissue Tolerance, and Na + Exclusion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Salinity, one of the major environmental constraints, threatens soil health and consequently agricultural productivity worldwide. Acacia auriculiformis, being a halophyte, offers diverse benefits against soil salinity; however, the defense mechanisms underlying salt-tolerant capacity in A. auriculiformis are still elusive. In this study, we aimed to elucidate mechanisms regulating the adaptability of the multi-purpose perennial species A. auriculiformis to salt stress. The growth, ion homeostasis, osmoprotection, tissue tolerance and Na + exclusion, and anatomical adjustments of A. auriculiformis grown in varied doses of seawater for 90 and 150 days were assessed. Results showed that diluted seawater caused notable reductions in the level of growth-related parameters, relative water content, stomatal conductance, photosynthetic pigments, proteins, and carbohydrates in dose- and time-dependent manners. However, the percent reduction of these parameters did not exceed 50% of those of control plants. Na + contents in phyllodes and roots increased with increasing levels of salinity, whereas K + contents and K +/Na + ratio decreased significantly in comparison with control plants. A. auriculiformis retained more Na + in the roots and maintained higher levels of K +, Ca 2+ and Mg 2+, and K +/Na + ratio in phyllodes than roots through ion selective capacity. The contents of proline, total free amino acids, total sugars and reducing sugars significantly accumulated together with the levels of malondialdehyde and electrolyte leakage in the phyllodes, particularly at day 150 th of salt treatment. Anatomical investigations revealed various anatomical changes in the tissues of phyllodes, stems and roots by salt stress, such as increase in the size of spongy parenchyma of phyllodes, endodermal thickness of stems and roots, and the diameter of root vascular bundle, relative to control counterparts. Furthermore, the estimated values for Na + exclusion and tissue tolerance index suggested that A. auriculiformis efficiently adopted these two mechanisms to address higher salinity levels. Our results conclude that the adaptability of A. auriculiformis to salinity is closely associated with ion selectivity, increased accumulation of osmoprotectants, efficient Na + retention in roots, anatomical adjustments, Na + exclusion and tissue tolerance mechanisms.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Genes and salt tolerance: bringing them together.

          Rana Munns (2005)
          Salinity tolerance comes from genes that limit the rate of salt uptake from the soil and the transport of salt throughout the plant, adjust the ionic and osmotic balance of cells in roots and shoots, and regulate leaf development and the onset of senescence. This review lists some candidate genes for salinity tolerance, and draws together hypotheses about the functions of these genes and the specific tissues in which they might operate. Little has been revealed by gene expression studies so far, perhaps because the studies are not tissue-specific, and because the treatments are often traumatic and unnatural. Suggestions are made to increase the value of molecular studies in identifying genes that are important for salinity tolerance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Salinity tolerance in halophytes.

            Halophytes, plants that survive to reproduce in environments where the salt concentration is around 200 mm NaCl or more, constitute about 1% of the world's flora. Some halophytes show optimal growth in saline conditions; others grow optimally in the absence of salt. However, the tolerance of all halophytes to salinity relies on controlled uptake and compartmentalization of Na+, K+ and Cl- and the synthesis of organic 'compatible' solutes, even where salt glands are operative. Although there is evidence that different species may utilize different transporters in their accumulation of Na+, in general little is known of the proteins and regulatory networks involved. Consequently, it is not yet possible to assign molecular mechanisms to apparent differences in rates of Na+ and Cl- uptake, in root-to-shoot transport (xylem loading and retrieval), or in net selectivity for K+ over Na+. At the cellular level, H+-ATPases in the plasma membrane and tonoplast, as well as the tonoplast H+-PPiase, provide the trans-membrane proton motive force used by various secondary transporters. The widespread occurrence, taxonomically, of halophytes and the general paucity of information on the molecular regulation of tolerance mechanisms persuade us that research should be concentrated on a number of 'model' species that are representative of the various mechanisms that might be involved in tolerance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops.

              Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops. This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na(+) sequestration; increasing the efficiency of internal Na(+) sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K(+) retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na(+) transport to the shoot.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                04 April 2017
                2017
                : 8
                : 155
                Affiliations
                [1] 1Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University Gazipur, Bangladesh
                [2] 2Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University Gazipur, Bangladesh
                [3] 3Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University Gazipur, Bangladesh
                Author notes

                Edited by: Shaoliang Chen, Beijing Forestry University, China

                Reviewed by: Narendra Singh Yadav, Ben-Gurion University of the Negev, Beersheba, Israel; Abdul Hameed, University of Karachi, Pakistan; Jie Song, Shandong Normal University, China

                *Correspondence: Mohammad G. Mostofa, mostofa@ 123456bsmrau.edu.bd

                This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2017.00155
                5378810
                b539635b-4069-43de-8dec-3c7f9ba93cd3
                Copyright © 2017 Rahman, Rahman, Miah, Saha, Karim and Mostofa.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 November 2016
                : 25 January 2017
                Page count
                Figures: 5, Tables: 4, Equations: 5, References: 68, Pages: 16, Words: 0
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                acacia,anatomical features,halophytes,ion homeostasis,perennial species,salinity,tissue tolerance

                Comments

                Comment on this article