10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-34a-5p Inhibits Proliferation, Migration, Invasion and Epithelial-mesenchymal Transition in Esophageal Squamous Cell Carcinoma by Targeting LEF1 and Inactivation of the Hippo-YAP1/TAZ Signaling Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Our previous studies reported that lymphoid enhancer-binding factor 1 (LEF1) was upregulated in esophageal squamous cell carcinoma (ESCC) and the positive expression of LEF1 was correlated with aberrant clinicopathological characteristics in ESCC patients. However, the upstream mechanism of regulating LEF1 is not clear fully. In this study, we explored the role of miR-34a-5p in ESCC and the possible regulatory mechanism.

          Methods: In this study, we applied western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), bioinformatics analysis, a luciferase reporter assay, and a series of functional assays to show the potential role of miR-34a-5p in regulating LEF1 in ESCC.

          Results: By various functional assays, we demonstrated that LEF1 promoted proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in ESCC cells. By bioinformatics analysis and luciferase reporter assay, miR-34a-5p was identified for directly targeting LEF1. Then we investigated the expression of miR-34a-5p and LEF1 in ESCC. As a result, miR-34a-5p was downregulated while LEF1 was upregulated in ESCC tissue and cell lines. Overexpression of miR-34a-5p could inhibit proliferation, migration, invasion and EMT of ESCC cells. The rescue experiment showed that re-expression of LEF1 reversed the suppressive effect caused by miR-34a-5p. At last, we found that miR-34a-5p could suppress Hippo-YAP1/TAZ signaling pathway in ESCC.

          Conclusion: Our results indicate miR-34a-5p inhibits proliferation, migration, invasion and EMT in ESCC by targeting LEF1 and suppressing the Hippo-YAP1/TAZ signaling pathway, which may provide a new antitumor strategy to delay ESCC progress.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Elp3 links tRNA modification to IRES-dependent translation of LEF1 to sustain metastasis in breast cancer

          Delaunay et al. reveal the role of U34 tRNA-modifying enzymes in the regulation of specific mRNA translation to support cell invasion and metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            NEAT1 regulates cell proliferation and apoptosis of ovarian cancer by miR-34a-5p/BCL2

            Background Nuclear enriched abundant transcript 1 (NEAT1) has been demonstrated to act as a tumor inhibitor in many cancers. However, the role of NEAT1 in the development of ovarian cancer (OC) remains far from being elaborated. Hence, the aim of this study is to investigate the expression and function of NEAT1 in OC. Materials and methods The expression level of NEAT1 was determined by quantitative real-time polymerase chain reaction in OC cell lines. MTT assay, caspase-3 activity assay, and flow cytometry analysis were conducted to investigate the effects of NEAT1, miR-34a-5p, or B-cell lymphoma-2 (BCL2) on OC cell proliferation and apoptosis. Luciferase reporter assay was used to confirm the interaction of NEAT1, BCL2, and miR-34a-5p in OC cells. Results NEAT1 was significantly upregulated in OC cell lines. NEAT1 overexpression promoted proliferation by increasing the proportion of cells in S phase and suppressed apoptosis of OC cells, while knockdown of NEAT1 had the opposite effect. In addition, NEAT1 was demonstrated to directly interact with miR-34a-5p and exert its oncogenic role in OC by negatively regulating miR-34a-5p. Moreover, miR-34a-5p could directly target BCL2 and suppressed its expression. miR-34a-5p overexpression suppressed OC cell proliferation and triggered apoptosis by targeting BCL2. Furthermore, NEAT1 knockdown suppressed BCL2 expression, while anti-miR-34a-5p dramatically abated the inhibitory effect of si-NEAT1 on BCL2 expression. Conclusion NEAT1 regulated proliferation and apoptosis of OC cells by miR-34a-5p/BCL2, providing a potential therapeutic approach for the treatment of OC patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              miR-34a inhibits pancreatic cancer progression through Snail1-mediated epithelial–mesenchymal transition and the Notch signaling pathway

              Epithelial–mesenchymal transition (EMT) and Notch signaling are important for the growth and invasion of pancreatic cancer, which is a leading cause of cancer-related deaths worldwide. miR-34a has been shown to play pivotal roles in the progression of several types of cancer. However, little is known about the regulatory mechanisms of miR-34a in pancreatic cancer processes. The aim of this study was to determine whether miR-34a has negative effects on pancreatic cancer and whether these effects are related to EMT and Notch signaling. In vitro, we demonstrated that miR-34a inhibited, while miR-34a inhibitors enhanced, migration and invasion of pancreatic cancer cell lines (PANC-1 and SW-1990).These effects were reversed by Snail1 overexpression or Snail1 shRNA. Furthermore, the anti-apoptotic effects of the miR-34a inhibitors in pancreatic cancer cells were abrogated by Notch1 shRNA. Luciferase reporter assays revealed that the Snail1 and Notch1 genes were direct targets of miR-34a. In vivo, we also demonstrated that miR-34a inhibited pancreatic cancer growth by decreasing Snail1 and Notch1 expression. Therefore, our results indicate that miR-34a inhibits pancreatic cancer progression by post-transcriptionally regulating Snail1 and Notch1 expression.
                Bookmark

                Author and article information

                Journal
                J Cancer
                J Cancer
                jca
                Journal of Cancer
                Ivyspring International Publisher (Sydney )
                1837-9664
                2020
                4 March 2020
                : 11
                : 10
                : 3072-3081
                Affiliations
                Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
                Author notes
                ✉ Corresponding authors: Hezhong Chen, Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China. Email: chzchanghai@ 123456163.com ; Tel: 021-31161764; Fax: 021-55786638 or Chunguang Li, Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China. Email: dr_lichunguang@ 123456163.com

                *Authors contributed equally to this manuscript.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                jcav11p3072
                10.7150/jca.39861
                7086260
                32226522
                b53a7f32-10ee-45bb-91bc-76de4aa203c9
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 1 September 2019
                : 21 January 2020
                Categories
                Research Paper

                Oncology & Radiotherapy
                mir-34a-5p,lymphoid enhancer-binding factor 1 (lef1),esophageal squamous cell carcinoma (escc),epithelial-mesenchymal transition (emt)

                Comments

                Comment on this article