19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Glucocorticoid-induced osteoporosis

      review-article
      ,
      RMD Open
      BMJ Publishing Group
      Cytokines, Inflammation, Osteoporosis, Rheumatoid Arthritis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Corticosteroid-induced osteoporosis is the most common form of secondary osteoporosis and the first cause in young people. Bone loss and increased rate of fractures occur early after the initiation of corticosteroid therapy, and are then related to dosage and treatment duration. The increase in fracture risk is not fully assessed by bone mineral density measurements, as it is also related to alteration of bone quality and increased risk of falls. In patients with rheumatoid arthritis, a treat-to-target strategy focusing on low disease activity including through the use of low dose of prednisone, is a key determinant of bone loss prevention. Bone loss magnitude is variable and there is no clearly identified predictor of the individual risk of fracture. Prevention or treatment of osteoporosis should be considered in all patients who receive prednisone. Bisphosphonates and the anabolic agent parathyroid hormone (1–34) have shown their efficacy in the treatment of corticosteroid-induced osteoporosis. Recent international guidelines are available and should guide management of corticosteroid-induced osteoporosis, which remains under-diagnosed and under-treated. Duration of antiosteoporotic treatment should be discussed at the individual level, depending on the subject's characteristics and on the underlying inflammation evolution.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand.

          Bone remodelling and bone loss are controlled by a balance between the tumour necrosis factor family molecule osteoprotegerin ligand (OPGL) and its decoy receptor osteoprotegerin (OPG). In addition, OPGL regulates lymph node organogenesis, lymphocyte development and interactions between T cells and dendritic cells in the immune system. The OPGL receptor, RANK, is expressed on chondrocytes, osteoclast precursors and mature osteoclasts. OPGL expression in T cells is induced by antigen receptor engagement, which suggests that activated T cells may influence bone metabolism through OPGL and RANK. Here we report that activated T cells can directly trigger osteoclastogenesis through OPGL. Systemic activation of T cells in vivo leads to an OPGL-mediated increase in osteoclastogenesis and bone loss. In a T-cell-dependent model of rat adjuvant arthritis characterized by severe joint inflammation, bone and cartilage destruction and crippling, blocking of OPGL through osteoprotegerin treatment at the onset of disease prevents bone and cartilage destruction but not inflammation. These results show that both systemic and local T-cell activation can lead to OPGL production and subsequent bone loss, and they provide a novel paradigm for T cells as regulators of bone physiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin.

            Autoimmunity is complicated by bone loss. In human rheumatoid arthritis (RA), the most severe inflammatory joint disease, autoantibodies against citrullinated proteins are among the strongest risk factors for bone destruction. We therefore hypothesized that these autoantibodies directly influence bone metabolism. Here, we found a strong and specific association between autoantibodies against citrullinated proteins and serum markers for osteoclast-mediated bone resorption in RA patients. Moreover, human osteoclasts expressed enzymes eliciting protein citrullination, and specific N-terminal citrullination of vimentin was induced during osteoclast differentiation. Affinity-purified human autoantibodies against mutated citrullinated vimentin (MCV) not only bound to osteoclast surfaces, but also led to robust induction of osteoclastogenesis and bone-resorptive activity. Adoptive transfer of purified human MCV autoantibodies into mice induced osteopenia and increased osteoclastogenesis. This effect was based on the inducible release of TNF-α from osteoclast precursors and the subsequent increase of osteoclast precursor cell numbers with enhanced expression of activation and growth factor receptors. Our data thus suggest that autoantibody formation in response to citrullinated vimentin directly induces bone loss, providing a link between the adaptive immune system and bone.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Teriparatide or alendronate in glucocorticoid-induced osteoporosis.

              Bisphosphonate therapy is the current standard of care for the prevention and treatment of glucocorticoid-induced osteoporosis. Studies of anabolic therapy in patients who are receiving long-term glucocorticoids and are at high risk for fracture are lacking. In an 18-month randomized, double-blind, controlled trial, we compared teriparatide with alendronate in 428 women and men with osteoporosis (ages, 22 to 89 years) who had received glucocorticoids for at least 3 months (prednisone equivalent, 5 mg daily or more). A total of 214 patients received 20 microg of teriparatide once daily, and 214 received 10 mg of alendronate once daily. The primary outcome was the change in bone mineral density at the lumbar spine. Secondary outcomes included changes in bone mineral density at the total hip and in markers of bone turnover, the time to changes in bone mineral density, the incidence of fractures, and safety. At the last measurement, the mean (+/-SE) bone mineral density at the lumbar spine had increased more in the teriparatide group than in the alendronate group (7.2+/-0.7% vs. 3.4+/-0.7%, P<0.001). A significant difference between the groups was reached by 6 months (P<0.001). At 12 months, bone mineral density at the total hip had increased more in the teriparatide group. Fewer new vertebral fractures occurred in the teriparatide group than in the alendronate group (0.6% vs. 6.1%, P=0.004); the incidence of nonvertebral fractures was similar in the two groups (5.6% vs. 3.7%, P=0.36). Significantly more patients in the teriparatide group had at least one elevated measure of serum calcium. Among patients with osteoporosis who were at high risk for fracture, bone mineral density increased more in patients receiving teriparatide than in those receiving alendronate. (ClinicalTrials.gov number, NCT00051558 [ClinicalTrials.gov].). Copyright 2007 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Journal
                RMD Open
                RMD Open
                rmdopen
                rmdopen
                RMD Open
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2056-5933
                2015
                8 April 2015
                : 1
                : 1
                : e000014
                Affiliations
                Department of Rheumatology, Research Center, Epidemiology and Biostatistics Sorbonne Paris Cité, Cochin Hospital, INSERM U1153, Paris Descartes University , Paris, France
                Author notes
                [Correspondence to ] Professor Christian Roux; christian.roux@ 123456cch.aphp.fr
                Article
                rmdopen-2014-000014
                10.1136/rmdopen-2014-000014
                4613168
                26509049
                b548bec8-b11b-4683-9a7f-b1a193b99a88
                Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions

                This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

                History
                : 12 February 2015
                : 16 March 2015
                : 17 March 2015
                Categories
                Osteoporosis
                1506
                Review

                cytokines,inflammation,osteoporosis,rheumatoid arthritis

                Comments

                Comment on this article