36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      CD4+ T-cell dysfunctions through the impaired lipid rafts ameliorate concanavalin A-induced hepatitis in sphingomyelin synthase 1-knockout mice.

      International Immunology
      Animals, CD4-Positive T-Lymphocytes, immunology, pathology, Concanavalin A, Hepatitis, Membrane Microdomains, Mice, Mice, Inbred C57BL, Mice, Knockout, Transferases (Other Substituted Phosphate Groups), deficiency

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Membrane microdomains consisting of sphingomyelin (SM) and cholesterol appear to be important for signal transduction in T-cell activation. The present study was designed to elucidate the role of membrane SM in vivo and in vitro using sphingomyelin synthase 1 (SMS1) knock out (SMS1(-/-)) mice and Concanavalin A (ConA)-induced hepatitis. After establishing SMS1(-/-) mice, we investigated CD4+ T-cell functions including proliferation, cytokine production and signal transduction in vivo. We also examined severity of hepatitis, cytokine production in serum and liver after ConA injection at a dose of 20 mg kg(-1). CD4+ T cells from SMS1(-/-) mice showed severe deficiency of membrane SM and several profound defects compared with wild-type controls as follows: (i) cellular proliferation and production of IL-2 and IFN-γ by co-cross-linking of CD3 and CD4; (ii) tyrosine phosphorylation of LAT and its association with ZAP-70; (iii) clustering and co-localization of TCR with lipid rafts. Consistent with these impaired CD4+ T-cell functions in vitro, SMS1(-/-) mice showed decreased serum levels of IL-6 and IFN-γ by ConA injection, which renders SMS1(-/-) mice less sensitive to ConA-induced hepatitis. These results indicated that the deficiency of membrane SM caused the CD4+ T-cell dysfunction through impaired lipid raft function contributed to protection of ConA-induced liver injury, suggesting that the membrane SM is critical for full T-cell activation both in vitro and in vivo.

          Related collections

          Author and article information

          Comments

          Comment on this article