6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ensemble-Level Organization of Human Kinetochores and Evidence for Distinct Tension and Attachment Sensors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Kinetochores are multi-protein machines that form dynamic attachments to microtubules and control chromosome segregation. High fidelity is ensured because kinetochores can monitor attachment status and tension, using this information to activate checkpoints and error-correction mechanisms. To explore how kinetochores achieve this, we used two- and three-color subpixel fluorescence localization to define how proteins from six major complexes (CCAN, MIS12, NDC80, KNL1, RZZ, and SKA) and the checkpoint proteins Bub1, Mad1, and Mad2 are organized in the human kinetochore. This reveals how the outer kinetochore has a high nematic order and is largely invariant to the loss of attachment or tension, except for two mechanical sensors. First, Knl1 unravels to relay tension, and second, NDC80 undergoes jackknifing and loss of nematic order under microtubule detachment, with only the latter wired up to the checkpoint signaling system. This provides insight into how kinetochores integrate mechanical signals to promote error-free chromosome segregation.

          Graphical Abstract

          Highlights

          • 3D mapping of kinetochore architecture in human RPE1 cells

          • Outer kinetochore (NDC80, Mad1, and RZZ) has high nematic order

          • NDC80 jackknives and KNL1 unravels upon loss of attachment and tension, respectively

          • Recruitment of Mad2 is only coupled to the occupancy sensor (NDC80)

          Abstract

          Roscioli et al. use subpixel imaging and computational methods to determine the ensemble-level 3D organization of the human kinetochore. They show how kinetochores undergo distinct rearrangements in response to the loss of attachment and tension.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          The conserved KMN network constitutes the core microtubule-binding site of the kinetochore.

          The microtubule-binding interface of the kinetochore is of central importance in chromosome segregation. Although kinetochore components that stabilize, translocate on, and affect the polymerization state of microtubules have been identified, none have proven essential for kinetochore-microtubule interactions. Here, we examined the conserved KNL-1/Mis12 complex/Ndc80 complex (KMN) network, which is essential for kinetochore-microtubule interactions in vivo. We identified two distinct microtubule-binding activities within the KMN network: one associated with the Ndc80/Nuf2 subunits of the Ndc80 complex, and a second in KNL-1. Formation of the complete KMN network, which additionally requires the Mis12 complex and the Spc24/Spc25 subunits of the Ndc80 complex, synergistically enhances microtubule-binding activity. Phosphorylation by Aurora B, which corrects improper kinetochore-microtubule connections in vivo, reduces the affinity of the Ndc80 complex for microtubules in vitro. Based on these findings, we propose that the conserved KMN network constitutes the core microtubule-binding site of the kinetochore.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Kinetochore microtubule dynamics and attachment stability are regulated by Hec1.

            Mitotic cells face the challenging tasks of linking kinetochores to growing and shortening microtubules and actively regulating these dynamic attachments to produce accurate chromosome segregation. We report here that Ndc80/Hec1 functions in regulating kinetochore microtubule plus-end dynamics and attachment stability. Microinjection of an antibody to the N terminus of Hec1 suppresses both microtubule detachment and microtubule plus-end polymerization and depolymerization at kinetochores of PtK1 cells. Centromeres become hyperstretched, kinetochore fibers shorten from spindle poles, kinetochore microtubule attachment errors increase, and chromosomes severely mis-segregate. The N terminus of Hec1 is phosphorylated by Aurora B kinase in vitro, and cells expressing N-terminal nonphosphorylatable mutants of Hec1 exhibit an increase in merotelic attachments, hyperstretching of centromeres, and errors in chromosome segregation. These findings reveal a key role for the Hec1 N terminus in controlling dynamic behavior of kinetochore microtubules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface.

              Accurate chromosome segregation requires carefully regulated interactions between kinetochores and microtubules, but how plasticity is achieved to correct diverse attachment defects remains unclear. Here we demonstrate that Aurora B kinase phosphorylates three spatially distinct targets within the conserved outer kinetochore KNL1/Mis12 complex/Ndc80 complex (KMN) network, the key player in kinetochore-microtubule attachments. The combinatorial phosphorylation of the KMN network generates graded levels of microtubule-binding activity, with full phosphorylation severely compromising microtubule binding. Altering the phosphorylation state of each protein causes corresponding chromosome segregation defects. Importantly, the spatial distribution of these targets along the kinetochore axis leads to their differential phosphorylation in response to changes in tension and attachment state. In total, rather than generating exclusively binary changes in microtubule binding, our results suggest a mechanism for the tension-dependent fine-tuning of kinetochore-microtubule interactions. Copyright (c) 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Cell Rep
                Cell Rep
                Cell Reports
                Cell Press
                2211-1247
                28 April 2020
                28 April 2020
                28 April 2020
                : 31
                : 4
                : 107535
                Affiliations
                [1 ]Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK
                [2 ]Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
                [3 ]Mathematics Institute, University of Warwick, Coventry, UK
                Author notes
                []Corresponding author n.j.burroughs@ 123456warwick.ac.uk
                [∗∗ ]Corresponding author a.d.mcainsh@ 123456warwick.ac.uk
                [4]

                Present address: Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK

                [5]

                Lead Contact

                Article
                S2211-1247(20)30435-6 107535
                10.1016/j.celrep.2020.107535
                7196887
                32348762
                b5609adc-5ea0-4715-ad3f-39fa96440f05
                © 2020 The Author(s)

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 6 August 2019
                : 10 February 2020
                : 27 March 2020
                Categories
                Article

                Cell biology
                mitosis,kinetochore,spindle assembly checkpoint,microtubule dynamics,ndc80,knl1,tension,bayesian inference

                Comments

                Comment on this article