9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Baicalein Attenuates Neuroinflammation by Inhibiting NLRP3/Caspase-1/GSDMD Pathway in MPTP-Induced Mice Model of Parkinson’s Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Inflammasome-induced neuroinflammation is a major pathogenic mechanism underlying the degeneration of nigral dopaminergic neurons in Parkinson’s disease (PD). Baicalein is a flavonoid isolated from the traditional Chinese medicinal herbal Scutellaria baicalensis Georgi with known anti-inflammatory and neuroprotective efficacy in models of neurodegenerative diseases, including PD. However, its effects on inflammasome-induced neuroinflammation during PD remain unclear.

          Methods

          We used N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce PD-like pathology in mice. Behavioral assessments including the pole test, rotarod test, and open field test were conducted to evaluate the effects of baicalein on MPTP-induced motor dysfunction. The efficacies of baicalein against MPTP-induced dopaminergic neuron loss and glial cell activation in the substantia nigra compact were examined by immunohistochemistry, effects on proinflammatory cytokines by quantitative real-time PCR and enzyme-linked immunosorbent assay, and effects on inflammasome pathway activation by immunoblotting and flow cytometry.

          Results

          Administration of baicalein reversed MPTP-induced motor dysfunction, loss of dopaminergic neurons, and pro-inflammatory cytokine elevation. Baicalein also inhibited NLRP3 and caspase-1 activation and suppressed gasdermin D-dependent pyroptosis. Additionally, baicalein inhibited the activation and proliferation of disease-associated proinflammatory microglia.

          Conclusions

          These findings suggest that baicalein can reverse MPTP-induced neuroinflammation in mice by suppressing NLRP3/caspase-1/gasdermin D pathway. Our study provides potential insight into the use of baicalein in PD therapy.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death.

          Inflammatory caspases (caspase-1, -4, -5 and -11) are critical for innate defences. Caspase-1 is activated by ligands of various canonical inflammasomes, and caspase-4, -5 and -11 directly recognize bacterial lipopolysaccharide, both of which trigger pyroptosis. Despite the crucial role in immunity and endotoxic shock, the mechanism for pyroptosis induction by inflammatory caspases is unknown. Here we identify gasdermin D (Gsdmd) by genome-wide clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 nuclease screens of caspase-11- and caspase-1-mediated pyroptosis in mouse bone marrow macrophages. GSDMD-deficient cells resisted the induction of pyroptosis by cytosolic lipopolysaccharide and known canonical inflammasome ligands. Interleukin-1β release was also diminished in Gsdmd(-/-) cells, despite intact processing by caspase-1. Caspase-1 and caspase-4/5/11 specifically cleaved the linker between the amino-terminal gasdermin-N and carboxy-terminal gasdermin-C domains in GSDMD, which was required and sufficient for pyroptosis. The cleavage released the intramolecular inhibition on the gasdermin-N domain that showed intrinsic pyroptosis-inducing activity. Other gasdermin family members were not cleaved by inflammatory caspases but shared the autoinhibition; gain-of-function mutations in Gsdma3 that cause alopecia and skin defects disrupted the autoinhibition, allowing its gasdermin-N domain to trigger pyroptosis. These findings offer insight into inflammasome-mediated immunity/diseases and also change our understanding of pyroptosis and programmed necrosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Parkinson disease

            Parkinson disease is the second-most common neurodegenerative disorder that affects 2-3% of the population ≥65 years of age. Neuronal loss in the substantia nigra, which causes striatal dopamine deficiency, and intracellular inclusions containing aggregates of α-synuclein are the neuropathological hallmarks of Parkinson disease. Multiple other cell types throughout the central and peripheral autonomic nervous system are also involved, probably from early disease onwards. Although clinical diagnosis relies on the presence of bradykinesia and other cardinal motor features, Parkinson disease is associated with many non-motor symptoms that add to overall disability. The underlying molecular pathogenesis involves multiple pathways and mechanisms: α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport and neuroinflammation. Recent research into diagnostic biomarkers has taken advantage of neuroimaging in which several modalities, including PET, single-photon emission CT (SPECT) and novel MRI techniques, have been shown to aid early and differential diagnosis. Treatment of Parkinson disease is anchored on pharmacological substitution of striatal dopamine, in addition to non-dopaminergic approaches to address both motor and non-motor symptoms and deep brain stimulation for those developing intractable L-DOPA-related motor complications. Experimental therapies have tried to restore striatal dopamine by gene-based and cell-based approaches, and most recently, aggregation and cellular transport of α-synuclein have become therapeutic targets. One of the greatest current challenges is to identify markers for prodromal disease stages, which would allow novel disease-modifying therapies to be started earlier.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling.

              Intracellular lipopolysaccharide from Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Burkholderia thailandensis activates mouse caspase-11, causing pyroptotic cell death, interleukin-1β processing, and lethal septic shock. How caspase-11 executes these downstream signalling events is largely unknown. Here we show that gasdermin D is essential for caspase-11-dependent pyroptosis and interleukin-1β maturation. A forward genetic screen with ethyl-N-nitrosourea-mutagenized mice links Gsdmd to the intracellular lipopolysaccharide response. Macrophages from Gsdmd(-/-) mice generated by gene targeting also exhibit defective pyroptosis and interleukin-1β secretion induced by cytoplasmic lipopolysaccharide or Gram-negative bacteria. In addition, Gsdmd(-/-) mice are protected from a lethal dose of lipopolysaccharide. Mechanistically, caspase-11 cleaves gasdermin D, and the resulting amino-terminal fragment promotes both pyroptosis and NLRP3-dependent activation of caspase-1 in a cell-intrinsic manner. Our data identify gasdermin D as a critical target of caspase-11 and a key mediator of the host response against Gram-negative bacteria.
                Bookmark

                Author and article information

                Journal
                Int J Neuropsychopharmacol
                Int J Neuropsychopharmacol
                ijnp
                International Journal of Neuropsychopharmacology
                Oxford University Press (US )
                1461-1457
                1469-5111
                November 2020
                06 August 2020
                06 August 2020
                : 23
                : 11
                : 762-773
                Affiliations
                [1 ] Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University , Nanjing, Jiangsu, China
                [3 ] Department of Neuro-Psychiatric Institute, Affiliated Brain Hospital of Nanjing Medical University , Nanjing, Jiangsu, China
                [2 ] Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University , Nanjing, Jiangsu, China
                Author notes

                W.R. and S.L. contributed equally to this work.

                Correspondence: Jingping Shi, PhD, Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu 210029, P. R. China ( profshijp@ 123456163.com ).
                Article
                pyaa060
                10.1093/ijnp/pyaa060
                7745250
                32761175
                b56e7230-b3da-4897-99a1-d31b16d7f399
                © The Author(s) 2020. Published by Oxford University Press on behalf of CINP.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 11 February 2020
                : 12 July 2020
                : 31 July 2020
                : 10 September 2020
                Page count
                Pages: 12
                Funding
                Funded by: Nanjing Medical University, DOI 10.13039/501100007289;
                Award ID: NMUB2018203
                Categories
                Regular Research Articles
                AcademicSubjects/MED00415
                AcademicSubjects/SCI01870

                Pharmacology & Pharmaceutical medicine
                parkinson’s disease,neuroinflammation,baicalein,gsdmd,nlrp3

                Comments

                Comment on this article