27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Adding liraglutide to lifestyle changes, metformin and testosterone therapy boosts erectile function in diabetic obese men with overt hypogonadism.

      Andrology
      Wiley
      testosterone replacement therapy, type 2 diabetes mellitus, erectile dysfunction, glucagon-like peptide-1 agonist, hypogonadism, obesity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this retrospective observational study was to evaluate whether adding liraglutide to lifestyle changes, metformin (Met) and testosterone replacement therapy (TRT), by means of improving weight and glycaemic control, could boost erectile function in type 2 diabetic obese men with overt hypogonadism and erectile dysfunction (ED) in a 'real-life setting'. Forty-three obese, diabetic and hypogonadal men (aged 45-59 years) were evaluated because of complaining about the recent onset of ED. They were subdivided into two groups according to whether hypogonadism occurred after puberty (G1; n = 30: 25 with dysfunctional hypogonadism and 5 with acquired hypogonadotropic hypogonadism) or before puberty (G2; n = 13: 10 with Klinefelter's syndrome and 3 with idiopathic hypogonadotropic hypogonadism). Both G1 and G2 patients were given a combination of testosterone (T) [testosterone undecanoate (TU) 1000 mg/every 12 weeks] and Met (2000-3000 mg/day) for 1 year. In the poor responders (N) to this therapy in terms of glycaemic target (G1N: n = 16; G2N: n = 10), liraglutide (L) (1.2 μg/day) was added for a second year, while the good responders (Y) to T + Met (G1Y: 14/30 and G2Y: 3/13) continued this two drugs regimen therapy for another year. All patients were asked to fill in the International Index of Erectile Function (IIEF 15) questionnaire before starting TU plus Met (T1) and after 12 months (T2) and 24 months (T3) of treatment. Patients underwent a clinical examination and a determination of serum sex hormone binding globulin (SHBG), total testosterone (T) and glycosylated haemoglobin (HbA1c) at T1, T2 and T3. At T2, each patient obtained an improvement of ED (p < 0.01) and of the metabolic parameters without reaching, however, the glycaemic goals [HbA1c = >7.5% (>58 mmol/mol)], while T turned out to be within the range of young men. L added to TU and Met regimen in G1N and G2N allowed these patients to reach not only the glycaemic target [HbA1c = <7.5% (<58 nmol/mol)] and a significant reduction in body weight (p < 0.01), but also a further increase in SHBG (p < 0.05) and T (p < 0.01) plasma levels as well as a significant increment of IIEF score (T3). Conversely, at T3 G1Y and G2Y, who received the combined therapy with TRT and Met for the second year, showed a partial failure of that treatment given that there was no improvement of the IIEF score and they showed a significant rise in serum HbA1c (p < 0.05) and weight (p < 0.04) compared with the assessments at T2. These results suggest that TRT could improve clinical and metabolic parameters in obese, type 2 diabetic men with ED and overt hypogonadism (independently of when T deficit occurred). Furthermore, in case of insufficient metabolic control the addition of L to TRT and Met regimen allows to achieve serum T levels in the range of healthy men, as well as to reach glycaemic target and to lower weight, leading to a considerable improvement of ED.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Pharmacological management of obesity: an endocrine Society clinical practice guideline.

          To formulate clinical practice guidelines for the pharmacological management of obesity.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Global guideline for type 2 diabetes.

            (2014)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis.

              Ageing in men is associated with a gradual decline in serum testosterone levels and a concomitant loss of muscle mass, accumulation of central adiposity, impaired mobility and increased risk of bone fractures. Whether androgen treatment might be beneficial in these subjects is still under debate. We have carried out a systematic review of randomized controlled trials (RCTs) evaluating the effects of testosterone (T) administration to middle-aged and ageing men on body composition, muscle strength, bone density, markers of bone metabolism and serum lipid profile. A comprehensive search of all published randomized clinical trials was performed using the MEDLINE, Cochrane Library, EMBASE and Current Contents databases. Guided by prespecified criteria, software-assisted data abstraction and quality assessed by two independent reviewers, 29 RCTs were found to be eligible. For each investigated variable, we reported the results of pooled estimates of testosterone treatment using the random effect model of meta-analysis. Heterogeneity, reproducibility and consistency of the findings across studies were explored using sensitivity and meta-regression analysis. Overall, 1,083 subjects were evaluated, 625 randomized to T, 427 to placebo and 31 to observation (control group). Weighted mean age was 64.5 years (range 49.9--77.6) and mean serum testosterone was 10.9 nmol/l (range 7.8--19). Testosterone treatment produced: (i) a reduction of 1.6 kg (CI: 2.5--0.6) of total body fat, corresponding to -6.2% (CI: 9.2--3.3) variation of initial body fat, (ii) an increase in fat free mass of 1.6 kg (CI: 0.6--2.6), corresponding to +2.7% (CI: 1.1--4.4) increase over baseline and (iii) no change in body weight. The effects of T on muscle strength were heterogeneous, showing a tendency towards improvement only at the leg/knee extension and handgrip of the dominant arm (pooled effect size=0.3 standard mean difference (SMD), CI: -0.0 to 0.6). Testosterone improved bone mineral density (BMD) at the lumbar spine by +3.7% (CI: 1.0--6.4%) compared to placebo, but not at the femoral neck, and produced a consistent reduction in bone resorption markers (pooled effect size = -0.6 SMD, CI: -1.0 to -0.2). Testosterone also reduced total cholesterol by 0.23 mmol/l (CI: -0.37 to -0.10), especially in men with lower baseline T concentrations, with no change in low density lipoprotein (LDL)-cholesterol. A significant reduction of high density lipoprotein (HDL)-cholesterol was found only in studies with higher mean T-values at baseline (-0.085 mmol/l, CI: -0.017 to -0.003). Sensitivity and meta-regression analysis revealed that the dose/type of T used, in particular the possibility of aromatization, explained the heterogeneity in findings observed on bone density and HDL-cholesterol among studies. The present analysis provides an estimate of the average treatment effects of testosterone therapy in middle-aged men. Our findings are sufficiently strong to justify further interventional studies focused on alternative targets of androgenic treatment carrying more stringent clinical implications, in particular the cardiovascular, metabolic and neurological systems.
                Bookmark

                Author and article information

                Comments

                Comment on this article