26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Challenges and opportunities in dermal/transdermal delivery

      , , , , ,
      Therapeutic Delivery
      Future Science Ltd

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transdermal drug delivery is an exciting and challenging area. There are numerous transdermal delivery systems currently available on the market. However, the transdermal market still remains limited to a narrow range of drugs. Further advances in transdermal delivery depend on the ability to overcome the challenges faced regarding the permeation and skin irritation of the drug molecules. Emergence of novel techniques for skin permeation enhancement and development of methods to lessen skin irritation would widen the transdermal market for hydrophilic compounds, macromolecules and conventional drugs for new therapeutic indications. As evident from the ongoing clinical trials of a wide variety of drugs for various clinical conditions, there is a great future for transdermal delivery of drugs.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          Transdermal drug delivery.

          Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, noncavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin's barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase its impact on medicine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microneedles for transdermal drug delivery.

            The success of transdermal drug delivery has been severely limited by the inability of most drugs to enter the skin at therapeutically useful rates. Recently, the use of micron-scale needles in increasing skin permeability has been proposed and shown to dramatically increase transdermal delivery, especially for macromolecules. Using the tools of the microelectronics industry, microneedles have been fabricated with a range of sizes, shapes and materials. Most drug delivery studies have emphasized solid microneedles, which have been shown to increase skin permeability to a broad range of molecules and nanoparticles in vitro. In vivo studies have demonstrated delivery of oligonucleotides, reduction of blood glucose level by insulin, and induction of immune responses from protein and DNA vaccines. For these studies, needle arrays have been used to pierce holes into skin to increase transport by diffusion or iontophoresis or as drug carriers that release drug into the skin from a microneedle surface coating. Hollow microneedles have also been developed and shown to microinject insulin to diabetic rats. To address practical applications of microneedles, the ratio of microneedle fracture force to skin insertion force (i.e. margin of safety) was found to be optimal for needles with small tip radius and large wall thickness. Microneedles inserted into the skin of human subjects were reported as painless. Together, these results suggest that microneedles represent a promising technology to deliver therapeutic compounds into the skin for a range of possible applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Current status and future potential of transdermal drug delivery.

              The past twenty five years have seen an explosion in the creation and discovery of new medicinal agents. Related innovations in drug delivery systems have not only enabled the successful implementation of many of these novel pharmaceuticals, but have also permitted the development of new medical treatments with existing drugs. The creation of transdermal delivery systems has been one of the most important of these innovations, offering a number of advantages over the oral route. In this article, we discuss the already significant impact this field has made on the administration of various pharmaceuticals; explore limitations of the current technology; and discuss methods under exploration for overcoming these limitations and the challenges ahead.
                Bookmark

                Author and article information

                Journal
                Therapeutic Delivery
                Therapeutic Delivery
                Future Science Ltd
                2041-5990
                2041-6008
                July 2010
                July 2010
                : 1
                : 1
                : 109-131
                Article
                10.4155/tde.10.16
                2995530
                21132122
                b57a9176-96b7-430c-b4a3-946079d5864f
                © 2010
                Product
                Self URI (article page): http://www.future-science.com/doi/10.4155/tde.10.16

                Comments

                Comment on this article