9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Glial-fibrillary-acidic-protein (GFAP) biomarker detection in serum-matrix: Functionalization strategies and detection by an ultra-high-frequency surface-acoustic-wave (UHF-SAW) lab-on-chip.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glial-fibrillary-acidic-protein (GFAP) has recently drawn significant attention from the clinical environment as a promising biomarker. The pathologies which can be linked to the presence of GFAP in blood severely affect the human central nervous system. These pathologies are glioblastoma multiforme (GBM), traumatic brain injuries (TBIs), multiple sclerosis (MS), intracerebral hemorrhage (ICH), and neuromyelitis optica (NMO). Here, we develop three different detection strategies for GFAP, among the most popular in the biosensing field and never examined side by side within the experimental frame. We compare their capability of detecting GFAP in a clean-buffer and serum-matrix by using gold-coated quartz-crystal-microbalance (QCM) sensors. All the three detection strategies are based on antibodies, and each of them focuses on a key aspect of the biosensing process. The first is based on a polyethylene glycol (PEG) chain for antifouling, the second on a protein-G linker for controlling antibody-orientation, and the third on antibody-splitting and direct surface immobilization for high-surface coverage. Then, we select the best-performing protocol and validate its detection performance with an ultra-high-frequency (UHF) surface-acoustic-wave (SAW) based lab-on-chip (LoC). GFAP successful detection is demonstrated in a clean-buffer and serum-matrix at a concentration of 35 pM. This GFAP level is compatible with clinical diagnostics. This result suggests the use of our technology for the realization of a point-of-care biosensing platform for the detection of multiple brain-pathology biomarkers.

          Related collections

          Author and article information

          Journal
          Biosens Bioelectron
          Biosensors & bioelectronics
          Elsevier BV
          1873-4235
          0956-5663
          Jan 15 2021
          : 172
          Affiliations
          [1 ] NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy; INTA srl, Intelligent Acoustics Systems, Via Nino Pisano 14, 56122, Pisa, Italy.
          [2 ] NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy.
          [3 ] Institute of Neuroscience, National Research Council (CNR), via G. Moruzzi 1, 56124, Pisa, Italy; Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, viale del Tirreno 331, 56128, Pisa, Italy.
          [4 ] Institute of Neuroscience, National Research Council (CNR), via G. Moruzzi 1, 56124, Pisa, Italy; Department of Biomedical Sciences, University of Padua, via G. Colombo 3, 35121, Padua, Italy.
          [5 ] Institute of Neuroscience, National Research Council (CNR), via G. Moruzzi 1, 56124, Pisa, Italy.
          [6 ] NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy; Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017, Pisa, Italy.
          [7 ] NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy; INTA srl, Intelligent Acoustics Systems, Via Nino Pisano 14, 56122, Pisa, Italy. Electronic address: marco.cecchini@nano.cnr.it.
          Article
          S0956-5663(20)30761-2
          10.1016/j.bios.2020.112774
          33160234
          b58bd7fa-93bc-443a-bb40-2e9be05ebf8b
          Copyright © 2020 Elsevier B.V. All rights reserved.
          History

          Biosensor,Brain damage,Glial fibrillary acidic protein (GFAP),Lab-on-chip,Point of care,Quartz crystal microbalance (QCM),Surface acoustic wave (SAW)

          Comments

          Comment on this article