+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Quantitative Guidance for Stove Usage and Performance to Achieve Health and Environmental Targets

      1 , , 2
      Environmental Health Perspectives

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Displacing the use of polluting and inefficient cookstoves in developing countries is necessary to achieve the potential health and environmental benefits sought through clean cooking solutions. Yet little quantitative context has been provided on how much displacement of traditional technologies is needed to achieve targets for household air pollutant concentrations or fuel savings.


          This paper provides instructive guidance on the usage of cooking technologies required to achieve health and environmental improvements.


          We evaluated different scenarios of displacement of traditional stoves with use of higher performing technologies. The air quality and fuel consumption impacts were estimated for these scenarios using a single-zone box model of indoor air quality and ratios of thermal efficiency.


          Stove performance and usage should be considered together, as lower performing stoves can result in similar or greater benefits than a higher performing stove if the lower performing stove has considerably higher displacement of the baseline stove. Based on the indoor air quality model, there are multiple performance–usage scenarios for achieving modest indoor air quality improvements. To meet World Health Organization guidance levels, however, three-stone fire and basic charcoal stove usage must be nearly eliminated to achieve the particulate matter target (< 1–3 hr/week), and substantially limited to meet the carbon monoxide guideline (< 7–9 hr/week).


          Moderate health gains may be achieved with various performance–usage scenarios. The greatest benefits are estimated to be achieved by near-complete displacement of traditional stoves with clean technologies, emphasizing the need to shift in the long term to near exclusive use of clean fuels and stoves. The performance–usage scenarios are also provided as a tool to guide technology selection and prioritize behavior change opportunities to maximize impact.


          Johnson MA, Chiang RA. 2015. Quantitative guidance for stove usage and performance to achieve health and environmental targets. Environ Health Perspect 123:820–826; http://dx.doi.org/10.1289/ehp.1408681

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010

          The Lancet, 380(9859), 2224-2260
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Solid Fuel Use for Household Cooking: Country and Regional Estimates for 1980–2010

            Background: Exposure to household air pollution from cooking with solid fuels in simple stoves is a major health risk. Modeling reliable estimates of solid fuel use is needed for monitoring trends and informing policy. Objectives: In order to revise the disease burden attributed to household air pollution for the Global Burden of Disease 2010 project and for international reporting purposes, we estimated annual trends in the world population using solid fuels. Methods: We developed a multilevel model based on national survey data on primary cooking fuel. Results: The proportion of households relying mainly on solid fuels for cooking has decreased from 62% (95% CI: 58, 66%) to 41% (95% CI: 37, 44%) between 1980 and 2010. Yet because of population growth, the actual number of persons exposed has remained stable at around 2.8 billion during three decades. Solid fuel use is most prevalent in Africa and Southeast Asia where > 60% of households cook with solid fuels. In other regions, primary solid fuel use ranges from 46% in the Western Pacific, to 35% in the Eastern Mediterranean and < 20% in the Americas and Europe. Conclusion: Multilevel modeling is a suitable technique for deriving reliable solid-fuel use estimates. Worldwide, the proportion of households cooking mainly with solid fuels is decreasing. The absolute number of persons using solid fuels, however, has remained steady globally and is increasing in some regions. Surveys require enhancement to better capture the health implications of new technologies and multiple fuel use.
              • Record: found
              • Abstract: found
              • Article: not found

              Millions dead: how do we know and what does it mean? Methods used in the comparative risk assessment of household air pollution.

              In the Comparative Risk Assessment (CRA) done as part of the Global Burden of Disease project (GBD-2010), the global and regional burdens of household air pollution (HAP) due to the use of solid cookfuels, were estimated along with 60+ other risk factors. This article describes how the HAP CRA was framed; how global HAP exposures were modeled; how diseases were judged to have sufficient evidence for inclusion; and how meta-analyses and exposure-response modeling were done to estimate relative risks. We explore relationships with the other air pollution risk factors: ambient air pollution, smoking, and secondhand smoke. We conclude with sensitivity analyses to illustrate some of the major uncertainties and recommendations for future work. We estimate that in 2010 HAP was responsible for 3.9 million premature deaths and ∼4.8% of lost healthy life years (DALYs), ranking it highest among environmental risk factors examined and one of the major risk factors of any type globally.

                Author and article information

                Environ Health Perspect
                Environ. Health Perspect
                Environmental Health Perspectives
                27 March 2015
                August 2015
                : 123
                : 8
                : 820-826
                [1 ]Berkeley Air Monitoring Group, Berkeley, California, USA
                [2 ]Global Alliance for Clean Cookstoves, Washington, DC, USA
                Author notes
                Address correspondence to M.A. Johnson, 2124 Kittredge St., #57, Berkeley, CA 94704 USA. Telephone: (510) 649-9355. E-mail: mjohnson@ 123456berkeleyair.com

                Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, “Reproduced with permission from Environmental Health Perspectives”); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.

                : 12 May 2014
                : 25 March 2015
                : 27 March 2015
                : 01 August 2015

                Public health
                Public health


                Comment on this article