8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Influence of Maternal and Postweaning Linseed Dietary Supplementation on Growth Rate, Lipid Profile, and Meat Quality Traits of Light Sarda Lambs

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The effects of dietary extruded linseed (EL) on growth performance, meat quality, and lipid profile of Semimembranosus and Longissimus lumborum muscles of 81 Sarda lambs were studied in a 3 × 3 design: EL content (0%, 10%, and 20%) of maternal dietary concentrate fed from 20 d to parturition to 60 d of lactation and EL content (0%, 10%, 20%) of lamb concentrate fed after weaning for 30 d. The basal diet was composed of alfalfa and meadow hay during pregnancy and alfalfa hay during lactation. At slaughter, carcass and meat quality were evaluated. Sensory quality of Semimembranosus from 0% and 20% EL lambs was assessed. Both maternal and postweaning diets affected growth performance, with higher body weights recorded with the 10% EL concentrate. Carcass and meat quality were not affected by diet. Saturated and monounsaturated FA decreased and n-3 polyunsaturated FA increased with increasing EL content in lamb diet. An increase in vaccenic and rumenic acid was associated with the EL content of the maternal diet. Both diets increased the n-6/n-3 FA ratio. No differences in acceptability were detected by consumers among groups. It is concluded that EL supplementation and early life nutrition can influence performance and FA metabolism in growing lambs.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          A rapid method of total lipid extraction and purification.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice.

            Maternal obesity and diet consumption during pregnancy have been linked to offspring adiposity, cardiovascular disease, and impaired glucose metabolism. Furthermore, nutrition during development is clearly linked to somatic growth. However, few studies have examined whether phenotypes derived from maternal high-fat diet exposure can be passed to subsequent generations and by what mechanisms this may occur. Here we report the novel finding of a significant body length increase that persisted across at least two generations of offspring in response to maternal high-fat diet exposure. This phenotype is not attributable to altered intrauterine conditions or maternal feeding behavior because maternal and paternal lineages were able to transmit the effect, supporting a true epigenetic manner of inheritance. We also detected a heritable feature of reduced insulin sensitivity across two generations. Alterations in the GH secretagogue receptor (GHSR), the GHSR transcriptional repressor AF5q31, plasma IGF-I concentrations, and IGF-binding protein-3 (IGFBP3) suggest a contribution of the GH axis. These studies provide evidence that the heritability of body length and glucose homeostasis are modulated by maternal diet across multiple generations, providing a mechanism where length can increase rapidly in concert with caloric availability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polyunsaturated fatty acids: biochemical, nutritional and epigenetic properties.

              Dietary polyunsaturated fatty acids (PUFA) have effects on diverse physiological processes impacting normal health and chronic diseases, such as the regulation of plasma lipid levels, cardiovascular and immune function, insulin action and neuronal development and visual function. Ingestion of PUFA will lead to their distribution to virtually every cell in the body with effects on membrane composition and function, eicosanoid synthesis, cellular signaling and regulation of gene expression. Cell specific lipid metabolism, as well as the expression of fatty acid-regulated transcription factors, likely play an important role in determining how cells respond to changes in PUFA composition. This review will focus on recent advances on the essentiality of these molecules and on their interplay in cell physiology, leading to new perspective in different therapeutic fields.
                Bookmark

                Author and article information

                Journal
                ScientificWorldJournal
                ScientificWorldJournal
                TSWJ
                The Scientific World Journal
                Hindawi Publishing Corporation
                2356-6140
                1537-744X
                2016
                13 March 2016
                : 2016
                : 5391682
                Affiliations
                Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
                Author notes
                *Massimo Trabalza-Marinucci: massimo.trabalza@ 123456unipg.it

                Academic Editor: Brigitte Picard

                Author information
                http://orcid.org/0000-0001-9082-0106
                Article
                10.1155/2016/5391682
                4808552
                27034972
                b5964a92-4ce2-4fce-b163-b1c22a77aaa3
                Copyright © 2016 Massimo Trabalza-Marinucci et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 October 2015
                : 15 February 2016
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article