156
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Water deficit is a serious environmental factor limiting the growth and productivity of plants worldwide. Improvement of drought tolerance and efficient water use are significant strategies to overcome this dilemma. In this study, a drought-responsive transcription factor, NUCLEAR FACTOR Y subunit B 7 ( PdNF-YB7), induced by osmotic stress (PEG6000) and abscisic acid, was isolated from fast-growing poplar clone NE-19 [ Populus nigra × ( Populus deltoides × Populus nigra)]. Ectopic overexpression of PdNF-YB7 ( oxPdB7) in Arabidopsis enhanced drought tolerance and whole-plant and instantaneous leaf water-use efficiency (WUE, the ratio of biomass produced to water consumed). Overexpressing lines had an increase in germination rate and root length and decrease in water loss and displayed higher photosynthetic rate, instantaneous leaf WUE, and leaf water potential to exhibit enhanced drought tolerance under water scarcity. Additionally, overexpression of PdNF-YB7 in Arabidopsis improved whole-plant WUE by increasing carbon assimilation and reducing transpiration with water abundance. These drought-tolerant, higher WUE transgenic Arabidopsis had earlier seedling establishment and higher biomass than controls under normal and drought conditions. In contrast, Arabidopsis mutant nf-yb3 was more sensitive to drought stress with lower WUE. However, complementation analysis indicated that complementary lines ( nf-yb3/PdB7) had almost the same drought response and WUE as wild-type Col-0. Taken together, these results suggest that PdNF-YB7 positively confers drought tolerance and improves WUE in Arabidopsis; thus it could potentially be used in breeding drought-tolerant plants with increased production even under water deficiency.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance.

          Nuclear factor Y (NF-Y) is a ubiquitous transcription factor composed of three distinct subunits (NF-YA, NF-YB, and NF-YC). We found that the Arabidopsis thaliana NFYA5 transcript is strongly induced by drought stress in an abscisic acid (ABA)-dependent manner. Promoter:beta-glucuronidase analyses showed that NFYA5 was highly expressed in vascular tissues and guard cells and that part of the induction by drought was transcriptional. NFYA5 contains a target site for miR169, which targets mRNAs for cleavage or translational repression. We found that miR169 was downregulated by drought stress through an ABA-dependent pathway. Analysis of the expression of miR169 precursors showed that miR169a and miR169c were substantially downregulated by drought stress. Coexpression of miR169 and NFYA5 suggested that miR169a was more efficient than miR169c at repressing the NFYA5 mRNA level. nfya5 knockout plants and plants overexpressing miR169a showed enhanced leaf water loss and were more sensitive to drought stress than wild-type plants. By contrast, transgenic Arabidopsis plants overexpressing NFYA5 displayed reduced leaf water loss and were more resistant to drought stress than the wild type. Microarray analysis indicated that NFYA5 is crucial for the expression of a number of drought stress-responsive genes. Thus, NFYA5 is important for drought resistance, and its induction by drought stress occurs at both the transcriptional and posttranscriptional levels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            BLAST-EXPLORER helps you building datasets for phylogenetic analysis

            Background The right sampling of homologous sequences for phylogenetic or molecular evolution analyses is a crucial step, the quality of which can have a significant impact on the final interpretation of the study. There is no single way for constructing datasets suitable for phylogenetic analysis, because this task intimately depends on the scientific question we want to address, Moreover, database mining softwares such as BLAST which are routinely used for searching homologous sequences are not specifically optimized for this task. Results To fill this gap, we designed BLAST-Explorer, an original and friendly web-based application that combines a BLAST search with a suite of tools that allows interactive, phylogenetic-oriented exploration of the BLAST results and flexible selection of homologous sequences among the BLAST hits. Once the selection of the BLAST hits is done using BLAST-Explorer, the corresponding sequence can be imported locally for external analysis or passed to the phylogenetic tree reconstruction pipelines available on the Phylogeny.fr platform. Conclusions BLAST-Explorer provides a simple, intuitive and interactive graphical representation of the BLAST results and allows selection and retrieving of the BLAST hit sequences based a wide range of criterions. Although BLAST-Explorer primarily aims at helping the construction of sequence datasets for further phylogenetic study, it can also be used as a standard BLAST server with enriched output. BLAST-Explorer is available at http://www.phylogeny.fr
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice.

              OsbZIP23 is a member of the basic leucine zipper (bZIP) transcription factor family in rice (Oryza sativa). Expression of OsbZIP23 is strongly induced by a wide spectrum of stresses, including drought, salt, abscisic acid (ABA), and polyethylene glycol treatments, while other stress-responsive genes of this family are slightly induced only by one or two of the stresses. Transactivation assay in yeast demonstrated that OsbZIP23 functions as a transcriptional activator, and the sequences at the N terminus (amino acids 1-59) and a region close to the C terminus (amino acids 210-240) are required for the transactivation activity. Transient expression of OsbZIP23-green fluorescent protein in onion (Allium cepa) cells revealed a nuclear localization of the protein. Transgenic rice overexpressing OsbZIP23 showed significantly improved tolerance to drought and high-salinity stresses and sensitivity to ABA. On the other hand, a null mutant of this gene showed significantly decreased sensitivity to a high concentration of ABA and decreased tolerance to high-salinity and drought stress, and this phenotype can be complemented by transforming the OsbZIP23 back into the mutant. GeneChip and real-time polymerase chain reaction analyses revealed that hundreds of genes were up- or down-regulated in the rice plants overexpressing OsbZIP23. More than half of these genes have been annotated or evidenced for their diverse functions in stress response or tolerance. In addition, more than 30 genes that are possible OsbZIP23-specific target genes were identified based on the comparison of the expression profiles in the overexpressor and the mutant of OsbZIP23. Collectively, these results indicate that OsbZIP23 functions as a transcriptional regulator that can regulate the expression of a wide spectrum of stress-related genes in response to abiotic stresses through an ABA-dependent regulation pathway. We propose that OsbZIP23 is a major player of the bZIP family in rice for conferring ABA-dependent drought and salinity tolerance and has high potential usefulness in genetic improvement of stress tolerance.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                J. Exp. Bot
                jexbot
                jexbot
                Journal of Experimental Botany
                Oxford University Press (UK )
                0022-0957
                1460-2431
                November 2013
                4 September 2013
                4 September 2013
                : 64
                : 14
                : 4589-4601
                Affiliations
                Nation Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University , No. 35 Tsinghua East Road, Beijing, PR China
                Author notes
                * These authors contributed equally to this manuscript.
                To whom correspondence should be addressed. E-mail: xiaxl@ 123456bjfu.edu.cn and yinwl@ 123456bjfu.edu.cn
                Article
                10.1093/jxb/ert262
                3808328
                24006421
                b5a85a3a-74dc-4f3b-a26d-82a2e9e4568c
                © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 13
                Categories
                Research Paper

                Plant science & Botany
                arabidopsis,drought tolerance,nf-yb,poplar,transcription factor,water-use efficiency.

                Comments

                Comment on this article