26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mechanics of cortical folding: stress, growth and stability

      , ,
      Philosophical Transactions of the Royal Society B: Biological Sciences
      The Royal Society

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d77363e189">Cortical folding, or gyrification, coincides with several important developmental processes. The folded shape of the human brain allows the cerebral cortex, the thin outer layer of neurons and their associated projections, to attain a large surface area relative to brain volume. Abnormal cortical folding has been associated with severe neurological, cognitive and behavioural disorders, such as epilepsy, autism and schizophrenia. However, despite decades of study, the mechanical forces that lead to cortical folding remain incompletely understood. Leading hypotheses have focused on the roles of (i) tangential growth of the outer cortex, (ii) spatio-temporal patterns in the birth and migration of neurons, and (iii) internal tension in axons. Recent experimental studies have illuminated not only the fundamental cellular and molecular processes underlying cortical development, but also the stress state, mechanical properties and spatio-temporal patterns of growth in the developing brain. The combination of mathematical modelling and physical measurements has allowed researchers to evaluate hypothesized mechanisms of folding, to determine whether each is consistent with physical laws. This review summarizes what physical scientists have learned from models and recent experimental observations, in the context of recent neurobiological discoveries regarding cortical development. Here, we highlight evidence of a combined mechanism, in which spatio-temporal patterns bias the locations of primary folds (i), but tangential growth of the cortical plate induces mechanical instability (ii) to propagate primary and higher-order folds. </p><p id="d77363e191">This article is part of the Theo Murphy meeting issue ‘Mechanics of development’.</p>

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          A tension-based theory of morphogenesis and compact wiring in the central nervous system.

          Many structural features of the mammalian central nervous system can be explained by a morphogenetic mechanism that involves mechanical tension along axons, dendrites and glial processes. In the cerebral cortex, for example, tension along axons in the white matter can explain how and why the cortex folds in a characteristic species-specific pattern. In the cerebellum, tension along parallel fibres can explain why the cortex is highly elongated but folded like an accordion. By keeping the aggregate length of axonal and dendritic wiring low, tension should contribute to the compactness of neural circuitry throughout the adult brain.
            • Record: found
            • Abstract: found
            • Article: not found

            Development of the human cerebral cortex: Boulder Committee revisited.

            In 1970 the Boulder Committee described the basic principles of the development of the CNS, derived from observations on the human embryonic cerebrum. Since then, numerous studies have significantly advanced our knowledge of the timing, sequence and complexity of developmental events, and revealed important inter-species differences. We review current data on the development of the human cerebral cortex and update the classical model of how the structure that makes us human is formed.
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanosensing is critical for axon growth in the developing brain

              During nervous system development, neurons extend axons along well-defined pathways. The current understanding of axon pathfinding is based mainly on chemical signalling. However, growing neurons interact not only chemically but also mechanically with their environment. Here we identify mechanical signals as important regulators of axon pathfinding. In vitro, substrate stiffness determined growth patterns of Xenopus retinal ganglion cell (RGC) axons. In vivo atomic force microscopy revealed striking stiffness gradient patterns in the embryonic brain. RGC axons grew towards the tissue’s softer side, which was reproduced in vitro in the absence of chemical gradients. To test the importance of mechanical signals for axon growth in vivo, we altered brain stiffness, blocked mechanotransduction pharmacologically, and knocked down the mechanosensitive ion channel Piezo1. All treatments resulted in aberrant axonal growth and pathfinding errors, suggesting that local tissue stiffness–read out by mechanosensitive ion channels–is critically involved in instructing neuronal growth in vivo.

                Author and article information

                Journal
                Philosophical Transactions of the Royal Society B: Biological Sciences
                Phil. Trans. R. Soc. B
                The Royal Society
                0962-8436
                1471-2970
                September 24 2018
                November 05 2018
                September 24 2018
                November 05 2018
                : 373
                : 1759
                : 20170321
                Article
                10.1098/rstb.2017.0321
                6158197
                30249772
                b5bd341c-a038-43e4-a6f2-066e133fea9a
                © 2018

                http://royalsocietypublishing.org/licence

                History

                Comments

                Comment on this article

                Related Documents Log