20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hypoxia-based strategies for angiogenic induction : The dawn of a new era for ischemia therapy and tissue regeneration

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Therapeutic angiogenesis promises to aid the healing and regeneration of tissues suffering from a compromised vascular supply. Ischaemia therapy has so far primarily focused on delivering isolated angiogenic growth factors. The limited success of these strategies in clinical trials, however, is increasingly forcing researchers to recognize the difficulties associated with trying to mimic the angiogenic process, due to its natural complexity. Instead, a new school of thought is gradually emerging, focusing on how to induce angiogenesis at its onset, by utilizing hypoxia, the primary angiogenic stimulus in physiological, as well pathological states. This shift in therapeutic approach is underlined by the realization of the importance of depressed HIF-1 α-mediated gene programming in non-healing ischemic tissues, which could explain their apparent habituation to chronic hypoxic stress and the limited capacity to generate adaptive angiogenesis. Hypoxia-based strategies, then effectively aim to override the habituated angiogenic cellular response, re-start the regenerative process and drive it to completion. Here we make a distinction between those strategies that utilize hypoxia in vitro as a preconditioning tool to optimize the angiogenic potential of tissue/cells before transplantation, vs. strategies that aim to induce hypoxia-induced signaling in vivo , directly, through pharmacological means or gene transfer. We then discuss possible future directions for the field, as it moves into the phase of clinical trials.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis.

          This study explored the novel strategy of hypoxic preconditioning of bone marrow mesenchymal stem cells before transplantation into the infarcted heart to promote their survival and therapeutic potential of mesenchymal stem cell transplantation after myocardial ischemia. Mesenchymal stem cells from green fluorescent protein transgenic mice were cultured under normoxic or hypoxic (0.5% oxygen for 24 hours) conditions. Expression of growth factors and anti-apoptotic genes were examined by immunoblot. Normoxic or hypoxic stem cells were intramyocardially injected into the peri-infarct region of rats 30 minutes after permanent myocardial infarction. Death of mesenchymal stem cells was assessed in vitro and in vivo after transplantation. Angiogenesis, infarct size, and heart function were measured 6 weeks after transplantation. Hypoxic preconditioning increased expression of pro-survival and pro-angiogenic factors including hypoxia-inducible factor 1, angiopoietin-1, vascular endothelial growth factor and its receptor, Flk-1, erythropoietin, Bcl-2, and Bcl-xL. Cell death of hypoxic stem cells and caspase-3 activation in these cells were significantly lower compared with that in normoxic stem cells both in vitro and in vivo. Transplantation of hypoxic versus normoxic mesenchymal stem cells after myocardial infarction resulted in an increase in angiogenesis, as well as enhanced morphologic and functional benefits of stem cell therapy. Hypoxic preconditioning enhances the capacity of mesenchymal stem cells to repair infarcted myocardium, attributable to reduced cell death and apoptosis of implanted cells, increased angiogenesis/vascularization, and paracrine effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats.

            Hypoxic preconditioning of stem cells and neural progenitor cells has been tested for promoting cell survival after transplantation. The present investigation examined the hypothesis that hypoxic preconditioning of bone marrow mesenchymal stem cells (BMSCs) could not only enhance their survival but also reinforce regenerative properties of these cells. BMSCs from eGFP engineered rats or pre-labeled with BrdU were pre-treated with normoxia (20% O(2), N-BMSCs) or sub-lethal hypoxia (0.5% O(2). H-BMSCs). The hypoxia exposure up-regulated HIF-1α and trophic/growth factors in BMSCs, including brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF) and its receptor FIK-1, erythropoietin (EPO) and its receptor EPOR, stromal derived factor-1 (SDF-1) and its CXC chemokine receptor 4 (CXCR4). Meanwhile, many pro-inflammatory cytokines/chemokines were down-regulated in H-BMSCs. N-BMSCs or H-BMSCs were intravenously injected into adult rats 24h after 90-min middle cerebral artery occlusion. Comparing to N-BMSCs, transplantation of H-BMSCs showed greater effect of suppressing microglia activity in the brain. Significantly more NeuN-positive and Glut1-positive cells were seen in the ischemic core and peri-infarct regions of the animals received H-BMSC transplantation than that received N-BMSCs. Some NeuN-positive and Glut-1-positive cells showed eGFP or BrdU immunoflourescent reactivity, suggesting differentiation from exogenous BMSCs into neuronal and vascular endothelial cells. In Rotarod test performed 15days after stroke, animals received H-BMSCs showed better locomotion recovery compared with stroke control and N-BMSC groups. We suggest that hypoxic preconditioning of transplanted cells is an effective means of promoting their regenerative capability and therapeutic potential for the treatment of ischemic stroke. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering.

              Low oxygen pressure (hypoxia) plays an important role in stimulating angiogenesis; there are, however, few studies to prepare hypoxia-mimicking tissue engineering scaffolds. Mesoporous bioactive glass (MBG) has been developed as scaffolds with excellent osteogenic properties for bone regeneration. Ionic cobalt (Co) is established as a chemical inducer of hypoxia-inducible factor (HIF)-1α, which induces hypoxia-like response. The aim of this study was to develop hypoxia-mimicking MBG scaffolds by incorporating ionic Co(2+) into MBG scaffolds and investigate if the addition of Co(2+) ions would induce a cellular hypoxic response in such a tissue engineering scaffold system. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of Co-containing MBG (Co-MBG) scaffolds were characterized and the cellular effects of Co on the proliferation, differentiation, vascular endothelial growth factor (VEGF) secretion, HIF-1α expression and bone-related gene expression of human bone marrow stromal cells (BMSCs) in MBG scaffolds were systematically investigated. The results showed that low amounts of Co (<5%) incorporated into MBG scaffolds had no significant cytotoxicity and that their incorporation significantly enhanced VEGF protein secretion, HIF-1α expression, and bone-related gene expression in BMSCs, and also that the Co-MBG scaffolds support BMSC attachment and proliferation. The scaffolds maintain a well-ordered mesopore channel structure and high specific surface area and have the capacity to efficiently deliver antibiotics drugs; in fact, the sustained released of ampicillin by Co-MBG scaffolds gives them excellent anti-bacterial properties. Our results indicate that incorporating cobalt ions into MBG scaffolds is a viable option for preparing hypoxia-mimicking tissue engineering scaffolds and significantly enhanced hypoxia function. The hypoxia-mimicking MBG scaffolds have great potential for bone tissue engineering applications by combining enhanced angiogenesis with already existing osteogenic properties. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Organogenesis
                Organogenesis
                ORG
                Organogenesis
                Landes Bioscience
                1547-6278
                1555-8592
                01 October 2013
                08 August 2013
                08 August 2013
                : 9
                : 4
                : 261-272
                Affiliations
                [1 ]Experimental Plastic Surgery; Clinic for Plastic and Hand Surgery; Klinikum Rechts der Isar; Technische Universität München; Munich, Germany
                [2 ]Department of Plastic, Reconstructive, Hand and Burn Surgery; Bogenhausen Hospital; Munich, Germany
                [3 ]Center for Applied New Technologies in Engineering for Regenerative Medicine (Canter); Munich, Germany
                Author notes
                [* ]Correspondence to: Arndt F Schilling, Email: a.schilling@ 123456tum.de
                Article
                2013ORG0005 25970
                10.4161/org.25970
                3903695
                23974216
                b5c8c90a-6212-4ab9-a0a7-78a80349c035
                Copyright © 2013 Landes Bioscience

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 16 June 2013
                : 30 July 2013
                Categories
                Review

                Molecular biology
                angiogenesis,ischaemia,therapy,hypoxia,pre-conditioning,gene transfer,hif1 stabilization
                Molecular biology
                angiogenesis, ischaemia, therapy, hypoxia, pre-conditioning, gene transfer, hif1 stabilization

                Comments

                Comment on this article