39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene–Environment Interactions in Severe Mental Illness

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Severe mental illness (SMI) is a broad category that includes schizophrenia, bipolar disorder, and severe depression. Both genetic disposition and environmental exposures play important roles in the development of SMI. Multiple lines of evidence suggest that the roles of genetic and environmental factors depend on each other. Gene–environment interactions may underlie the paradox of strong environmental factors for highly heritable disorders, the low estimates of shared environmental influences in twin studies of SMI, and the heritability gap between twin and molecular heritability estimates. Sons and daughters of parents with SMI are more vulnerable to the effects of prenatal and postnatal environmental exposures, suggesting that the expression of genetic liability depends on environment. In the last decade, gene–environment interactions involving specific molecular variants in candidate genes have been identified. Replicated findings include an interaction between a polymorphism in the AKT1 gene and cannabis use in the development of psychosis and an interaction between the length polymorphism of the serotonin transporter gene and childhood maltreatment in the development of persistent depressive disorder. Bipolar disorder has been underinvestigated, with only a single study showing an interaction between a functional polymorphism in the BDNF gene and stressful life events triggering bipolar depressive episodes. The first systematic search for gene–environment interactions has found that a polymorphism in CTNNA3 may sensitize the developing brain to the pathogenic effect of cytomegalovirus in utero, leading to schizophrenia in adulthood. Strategies for genome-wide investigations will likely include coordination between epidemiological and genetic research efforts, systematic assessment of multiple environmental factors in large samples, and prioritization of genetic variants.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults.

          In addition to trauma exposure, other factors contribute to risk for development of posttraumatic stress disorder (PTSD) in adulthood. Both genetic and environmental factors are contributory, with child abuse providing significant risk liability. To increase understanding of genetic and environmental risk factors as well as their interaction in the development of PTSD by gene x environment interactions of child abuse, level of non-child abuse trauma exposure, and genetic polymorphisms at the stress-related gene FKBP5. A cross-sectional study examining genetic and psychological risk factors in 900 nonpsychiatric clinic patients (762 included for all genotype studies) with significant levels of childhood abuse as well as non-child abuse trauma using a verbally presented survey combined with single-nucleotide polymorphism (SNP) genotyping. Participants were primarily urban, low-income, black (>95%) men and women seeking care in the general medical care and obstetrics-gynecology clinics of an urban public hospital in Atlanta, Georgia, between 2005 and 2007. Severity of adult PTSD symptomatology, measured with the modified PTSD Symptom Scale, non-child abuse (primarily adult) trauma exposure and child abuse measured using the traumatic events inventory and 8 SNPs spanning the FKBP5 locus. Level of child abuse and non-child abuse trauma each separately predicted level of adult PTSD symptomatology (mean [SD], PTSD Symptom Scale for no child abuse, 8.03 [10.48] vs > or =2 types of abuse, 20.93 [14.32]; and for no non-child abuse trauma, 3.58 [6.27] vs > or =4 types, 16.74 [12.90]; P < .001). Although FKBP5 SNPs did not directly predict PTSD symptom outcome or interact with level of non-child abuse trauma to predict PTSD symptom severity, 4 SNPs in the FKBP5 locus significantly interacted (rs9296158, rs3800373, rs1360780, and rs9470080; minimum P = .0004) with the severity of child abuse to predict level of adult PTSD symptoms after correcting for multiple testing. This gene x environment interaction remained significant when controlling for depression severity scores, age, sex, levels of non-child abuse trauma exposure, and genetic ancestry. This genetic interaction was also paralleled by FKBP5 genotype-dependent and PTSD-dependent effects on glucocorticoid receptor sensitivity, measured by the dexamethasone suppression test. Four SNPs of the FKBP5 gene interacted with severity of child abuse as a predictor of adult PTSD symptoms. There were no main effects of the SNPs on PTSD symptoms and no significant genetic interactions with level of non-child abuse trauma as predictor of adult PTSD symptoms, suggesting a potential gene-childhood environment interaction for adult PTSD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Causation and causal inference in epidemiology.

            Concepts of cause and causal inference are largely self-taught from early learning experiences. A model of causation that describes causes in terms of sufficient causes and their component causes illuminates important principles such as multi-causality, the dependence of the strength of component causes on the prevalence of complementary component causes, and interaction between component causes. Philosophers agree that causal propositions cannot be proved, and find flaws or practical limitations in all philosophies of causal inference. Hence, the role of logic, belief, and observation in evaluating causal propositions is not settled. Causal inference in epidemiology is better viewed as an exercise in measurement of an effect rather than as a criterion-guided process for deciding whether an effect is present or not.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic epidemiology of major depression: review and meta-analysis.

              The authors conducted a meta-analysis of relevant data from primary studies of the genetic epidemiology of major depression. The authors searched MEDLINE and the reference lists of previous review articles to identify relevant primary studies. On the basis of a review of family, adoption, and twin studies that met specific inclusion criteria, the authors derived quantitative summary statistics. Five family studies met the inclusion criteria. The odds ratios for proband (subjects with major depression or comparison subjects) versus first-degree relative status (affected or unaffected with major depression) were homogeneous across the five studies (Mantel-Haenszel odds ratio=2.84, 95% CI=2.31-3.49). No adoption study met the inclusion criteria, but the results of two of the three reports were consistent with genetic influences on liability to major depression. Five twin studies met the inclusion criteria, and their statistical summation suggested that familial aggregation was due to additive genetic effects (point estimate of heritability of liability=37%, 95% CI=31%-42%), with a minimal contribution of environmental effects common to siblings (point estimate=0%, 95% CI=0%-5%), and substantial individual-specific environmental effects/measurement error (point estimate=63%, 95% CI=58%-67%). The literature suggests that recurrence best predicts the familial aggregation of major depression. Major depression is a familial disorder, and its familiality mostly or entirely results from genetic influences. Environmental influences specific to an individual are also etiologically significant. Major depression is a complex disorder that does not result from either genetic or environmental influences alone but rather from both. These findings are notably consistent across samples and methods and are likely to be generally applicable.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychiatry
                Front Psychiatry
                Front. Psychiatry
                Frontiers in Psychiatry
                Frontiers Media S.A.
                1664-0640
                12 February 2014
                15 May 2014
                2014
                : 5
                : 48
                Affiliations
                [1] 1Department of Psychiatry, Dalhousie University , Halifax, NS, Canada
                [2] 2Department of Psychology and Neuroscience, Dalhousie University , Halifax, NS, Canada
                [3] 3Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London , London, UK
                Author notes

                Edited by: Helen Fisher, King’s College London, UK

                Reviewed by: Silvia Alemany, Universitat de Barcelona, Spain; Ruud Van Winkel, Maastricht University, Netherlands

                *Correspondence: Rudolf Uher, Department of Psychiatry, Dalhousie University, 5909 Veterans’ Memorial Lane, Halifax, NS B3H 2E2, Canada e-mail: uher@ 123456dal.ca

                This article was submitted to Schizophrenia, a section of the journal Frontiers in Psychiatry.

                Article
                10.3389/fpsyt.2014.00048
                4030208
                24860514
                b5cc4679-8088-425e-ba0b-446e219ee371
                Copyright © 2014 Uher.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 January 2014
                : 23 April 2014
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 120, Pages: 9, Words: 8730
                Categories
                Psychiatry
                Review Article

                Clinical Psychology & Psychiatry
                gene–environment interactions,genome-wide association studies,schizophrenia,bipolar disorder,major depressive disorder,severe mental illness

                Comments

                Comment on this article