5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Xiaokeping mixture inhibits diabetic nephropathy in streptozotocin-induced rats through blocking TGF-β1/Smad7 signaling

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Diabetic nephropathy (DN) is a major cause of chronic kidney failure and characterized by excessive deposition of extracellular matrix. Evidence have shown that transforming growth factor-β1 (TGF-β1) is a key mediator in the development of DN. However, treatment of DN by blocking the TGF-β1/Smad7 pathway remains limited. Xiaokeping mixture (XKP), a traditional Chinese herbal compound, has been used for treatment in patients with DN for many years.

          Methods

          In the present study, TGF-β1/Smad7 pathway analysis was used to evaluate the therapeutic effect of XKP on DN rats induced by streptozotocin and to address the underlying molecular mechanism. Male rats were divided into four groups: normal control, untreated control group (fed with high fat), irbesartan-treated DN, and XKP-treated DN, respectively. Levels of serum creatinine, blood urea nitrogen, urine protein of 24 hours, and triacylglycerol were detected. Pathological changes of renal tissues were observed by hematoxylin–eosin staining. Immunohistochemical and Western blot analysis were used to detect the expressions of TGF-β1 and Smad7.

          Results

          The results demonstrated that XKP can effectively reduce the levels of glucose, serum creatinine, blood urea nitrogen, urine protein of 24 hours, and triacylglycerol. Further studies indicated that inhibition of DN in XKP-treated DN rats was associated with inhibition of TGF-β1/Smad7 signaling as demonstrated by downregulation of TGF-β1 but upregulation of Smad7.

          Conclusion

          The data obtained from the present study indicate that XKP may be a therapeutic agent for DN.

          Related collections

          Most cited references 16

          • Record: found
          • Abstract: found
          • Article: not found

          The role of TGF-β and epithelial-to mesenchymal transition in diabetic nephropathy.

          Transforming Growth Factor-beta (TGF-β) is a pro-sclerotic cytokine widely associated with the development of fibrosis in diabetic nephropathy. Central to the underlying pathology of tubulointerstitial fibrosis is epithelial-to-mesenchymal transition (EMT), or the trans-differentiation of tubular epithelial cells into myofibroblasts. This process is accompanied by a number of key morphological and phenotypic changes culminating in detachment of cells from the tubular basement membrane and migration into the interstitium. Ultimately these cells reside as activated myofibroblasts and further exacerbate the state of fibrosis. A large body of evidence supports a role for TGF-β and downstream Smad signalling in the development and progression of renal fibrosis. Here we discuss a role for TGF-β as the principle effector in the development of renal fibrosis in diabetic nephropathy, focusing on the role of the TGF-β1 isoform and its downstream signalling intermediates, the Smad proteins. Specifically we review evidence for TGF-β1 induced EMT in both the proximal and distal regions of the nephron and describe potential therapeutic strategies that may target TGF-β1 activity. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b.

            Renal fibrosis results from excessive accumulation of extracellular matrix mainly driven by transforming growth factor-β1 (TGF-β1). Certain microRNAs have been implicated in this disease, and here we examine the role of let-7b. Rat proximal tubular epithelial cells (NRK52E) were treated with TGF-β1 for 3 days to assess the expression of markers of fibrosis and let-7b. These factors were also assessed in two mouse models representing early and more advanced diabetic nephropathy and in the non-diabetic adenine-induced renal fibrosis model. TGF-β1 downregulated the expression of let-7b and induced fibrogenesis in NRK52E cells. Ectopic expression of let-7b repressed TGF-β1 receptor 1 (TGFBR1) expression directly by targeting the two let-7b binding sites in the 3'-untranslated region of that gene, reduced expression of extracellular matrix proteins, decreased SMAD3 activity, and attenuated the profibrotic effects of TGF-β1. Knockdown of let-7b elevated TGFBR1 expression and mimicked some of the profibrotic effects of TGF-β1. Consistent with these observations, let-7b expression was also reduced in models of both diabetic and non-diabetic renal fibrosis with the upregulation of TGFBR1. Thus, let-7b microRNA represents a potential new target for the treatment of renal fibrosis in diabetic and non-diabetic nephropathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transforming growth factor-β/Smad signalling in diabetic nephropathy.

               Hui-Yao Lan (2012)
              Diabetic nephropathy (DN) is a major diabetic complication that is mediated by transforming growth factor (TGF)-β1 via Smad-dependent and -independent signalling pathways. Under diabetic conditions, many profibrotic factors, such as advanced glycation end-products and angiotensin II, can also activate the Smad signalling pathway via the extracellular signal-regulated kinase/p38 mitogen-activated protein kinase-Smad signalling cross-talk pathway. Thus, Smads act as signal integrators and interact with other signalling pathways to mediate DN. In the context of renal fibrosis, Smad3 is pathogenic, but Smad2 is protective. Deletion of Smad3 inhibits, whereas disruption of Smad2 upregulates, connective tissue growth factor and vascular endothelial growth factor expression and promotes both epithelial-myofibroblast and endothelial-myofibroblast transition. Smad7 plays a protective role in DN because deletion of Smad7 enhances, whereas overexpression of Smad7 inhibits, Smad3-mediated renal fibrosis and nuclear factor-κB-driven renal inflammation. Transforming growth factor-β1 activates Smad3 to regulate microRNAs that mediate renal fibrosis. Of these, miR-21 and miR-192 are upregulated, whereas the miR-29 and miR-200 families are downregulated. Targeting downstream TGF-β/Smad signalling by overexpressing Smad7- or Smad3-dependent microRNA related to fibrosis may represent a novel and effective strategy for the treatment of DN. © 2011 The Author Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2015
                30 November 2015
                : 9
                : 6269-6274
                Affiliations
                Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, People’s Republic of China
                Author notes
                Correspondence: Gonghua Li, Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Gucui Road, 310020 Hangzhou, People’s Republic of China, Tel +86 571 899 722 40, Email xyaoshi9@ 123456163.com
                Article
                dddt-9-6269
                10.2147/DDDT.S93964
                4670018
                © 2015 Xin et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article