95
views
0
recommends
+1 Recommend
2 collections
    1
    shares

      To learn more about AK Journals, please click here

      The APC waiver has been extended to also apply to manuscripts submitted until March 31, 2024.

      To submit to the journal, please click here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Infectious diseases pose a formidable global challenge, compounded by the emergence of antimicrobial resistance. Consequently, researchers are actively exploring novel antimicrobial compounds as potential solutions. This endeavor underscores the pivotal role of methods employed for screening and evaluating antimicrobial activity—a critical step in discovery and characterization of antimicrobial agents. While traditional techniques such as well-diffusion, disk-diffusion, and broth-dilution are commonly utilized in antimicrobial assays, they may encounter limitations concerning reproducibility and speed. Additionally, a diverse array of antimicrobial assays including cross-streaking, poisoned-food, co-culture, time-kill kinetics, resazurin assay, bioautography, etc., are routinely employed in antimicrobial evaluations. Advanced techniques such as flow-cytometry, impedance analysis, and bioluminescent technique may offer rapid and sensitive results, providing deeper insights into the impact of antimicrobials on cellular integrity. However, their higher cost and limited accessibility in certain laboratory settings may present challenges. This article provides a comprehensive overview of assays designed to characterize antimicrobial activity, elucidating their underlying principles, protocols, advantages, and limitations. The primary objective is to enhance understanding of the methodologies designed for evaluating antimicrobial agents in our relentless battle against infectious diseases. By selecting the appropriate antimicrobial testing method, researchers can discern suitable conditions and streamline the identification of effective antimicrobial agents.

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances.

          The aim of broth and agar dilution methods is to determine the lowest concentration of the assayed antimicrobial agent (minimal inhibitory concentration, MIC) that, under defined test conditions, inhibits the visible growth of the bacterium being investigated. MIC values are used to determine susceptibilities of bacteria to drugs and also to evaluate the activity of new antimicrobial agents. Agar dilution involves the incorporation of different concentrations of the antimicrobial substance into a nutrient agar medium followed by the application of a standardized number of cells to the surface of the agar plate. For broth dilution, often determined in 96-well microtiter plate format, bacteria are inoculated into a liquid growth medium in the presence of different concentrations of an antimicrobial agent. Growth is assessed after incubation for a defined period of time (16-20 h) and the MIC value is read. This protocol applies only to aerobic bacteria and can be completed in 3 d.
            • Record: found
            • Abstract: not found
            • Article: not found

            Antibiotic susceptibility testing by a standardized single disk method.

              • Record: found
              • Abstract: found
              • Article: not found

              Plant products as antimicrobial agents.

              The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists, and natural-products chemists are combing the Earth for phytochemicals and "leads" which could be developed for treatment of infectious diseases. While 25 to 50% of current pharmaceuticals are derived from plants, none are used as antimicrobials. Traditional healers have long used plants to prevent or cure infectious conditions; Western medicine is trying to duplicate their successes. Plants are rich in a wide variety of secondary metabolites, such as tannins, terpenoids, alkaloids, and flavonoids, which have been found in vitro to have antimicrobial properties. This review attempts to summarize the current status of botanical screening efforts, as well as in vivo studies of their effectiveness and toxicity. The structure and antimicrobial properties of phytochemicals are also addressed. Since many of these compounds are currently available as unregulated botanical preparations and their use by the public is increasing rapidly, clinicians need to consider the consequences of patients self-medicating with these preparations.

                Author and article information

                Contributors
                Journal
                Eur J Microbiol Immunol (Bp)
                Eur J Microbiol Immunol (Bp)
                EUJMI
                European Journal of Microbiology & Immunology
                Akadémiai Kiadó (Budapest )
                2062-509X
                2062-8633
                22 April 2024
                June 2024
                : 14
                : 2
                : 97-115
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, University of Chittagong , Chattogram, Bangladesh
                [2 ]Biochemistry and Pathogenesis of Microbes – BPM Unit, Laboratory for Health, Omics and Pathway Exploration (HOPE Research) , Chattogram, Bangladesh
                Author notes
                [* ]Corresponding author. E-mail: tanim.bmb@ 123456gmail.com
                Author information
                https://orcid.org/0000-0002-0978-2657
                Article
                10.1556/1886.2024.00035
                11097785
                38648108
                b5eab6bd-b2cf-48fd-b751-877155817d2e
                © 2024 The Author(s)

                Open Access statement. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium for non-commercial purposes, provided the original author and source are credited, a link to the CC License is provided, and changes – if any – are indicated.

                History
                : 13 March 2024
                : 05 April 2024
                Page count
                Figures: 5, Equations: 0, References: 97, Pages: 00
                Categories
                Article

                antimicrobial assay method,antifungal assay,disk diffusion test,co-culture assay,time kill kinetics,broth dilution,resazurin test,bioautography,plant extract,antimicrobial susceptibility testing

                Comments

                Comment on this article

                Related Documents Log