32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Applying GSH to a Wide Range of Experiments in Granular Media

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Granular solid hydrodynamics (GSH) is a continuum-mechanical theory for granular media, the range of which is shown in this paper. Simple, frequently analytic solutions are related to classic observations at different shear rates, including: (i)~static stress distribution, clogging; (ii)~elasto-plastic motion: loading and unloading, approach to the critical state, angle of stability and repose; (iii)~rapid dense flow: the \(\mu\)-rheology, Bagnold scaling and the stress minimum; (iv)~elastic waves, compaction, wide and narrow shear band. Less conventional experiments have also been considered: shear jamming, creep flow, visco-elastic behavior and nonlocal fluidization. With all these phenomena ordered, related, explained and accounted for, though frequently qualitatively, we believe that GSH may be taken as a unifying framework, providing the appropriate macroscopic vocabulary and mindset that help one coming to terms with the breadth of granular physics.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          Experiments on a Gravity-Free Dispersion of Large Solid Spheres in a Newtonian Fluid under Shear

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A constitutive law for dense granular flows.

            A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Unified Hydrodynamic Theory for Crystals, Liquid Crystals, and Normal Fluids

                Bookmark

                Author and article information

                Journal
                1407.7219

                Condensed matter
                Condensed matter

                Comments

                Comment on this article