9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Scaling-Up the Impact of Aflatoxin Research in Africa. The Role of Social Sciences

      other
      Toxins
      MDPI
      food safety, aflatoxins, value chains, crop improvement, post-harvest management, maize, groundnuts

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          At the interface between agriculture and nutrition, the aflatoxin contamination of food and feed touches on agriculture, health, and trade. For more than three decades now, the problem of aflatoxin has been researched in Africa. The interest of development cooperation for aflatoxin and the support to aflatoxin mitigation projects has its ups and downs. The academic world and the development world still seem to operate in different spheres and a collaboration is still challenging due to the complexity of the contamination sources at pre-harvest and post-harvest levels. There is a growing call by research funders and development actors for the impact of solutions at a scale. The solutions to mitigate aflatoxin contamination require new ways of working together. A more prominent role is to be played by social scientists. The role of social scientists in scaling-up the impact of aflatoxin research in Africa and the proposed mitigation solutions is to ensure that awareness, advantage, affordability, and access are systematically assessed. Aflatoxin-reduced staple foods and feed would be an agricultural result with a considerable health and food safety impact.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Aflatoxin B1 contamination in maize in Europe increases due to climate change

          Climate change has been reported as a driver for emerging food and feed safety issues worldwide and its expected impact on the presence of mycotoxins in food and feed is of great concern. Aflatoxins have the highest acute and chronic toxicity of all mycotoxins; hence, the maximal concentration in agricultural food and feed products and their commodities is regulated worldwide. The possible change in patterns of aflatoxin occurrence in crops due to climate change is a matter of concern that may require anticipatory actions. The aim of this study was to predict aflatoxin contamination in maize and wheat crops, within the next 100 years, under a +2 °C and +5 °C climate change scenario, applying a modelling approach. Europe was virtually covered by a net, 50 × 50 km grids, identifying 2254 meshes with a central point each. Climate data were generated for each point, linked to predictive models and predictions were run consequently. Aflatoxin B1 is predicted to become a food safety issue in maize in Europe, especially in the +2 °C scenario, the most probable scenario of climate change expected for the next years. These results represent a supporting tool to reinforce aflatoxin management and to prevent human and animal exposure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Concise History of Mycotoxin Research.

            Toxigenic fungi and mycotoxins entered human food supplies about the time when mankind first began to cultivate crops and to store them from one season to the next, perhaps 10,000 years ago. The storage of cereals probably initiated the transition by mankind from hunter-gatherer to cultivator, at the same time providing a vast new ecological niche for fungi pathogenic on grain crops or saprophytic on harvested grain, many of which produced mycotoxins. Grains have always been the major source of mycotoxins in the diet of man and his domestic animals. In the historical context, ergotism from Claviceps purpurea in rye has been known probably for more than 2000 years and caused the deaths of many thousands of people in Europe in the last millennium. Known in Japan since the 17th century, acute cardiac beriberi associated with the consumption of moldy rice was found to be due to citreoviridin produced by Penicillium citreonigrum. This toxin was believed to be only of historic importance until its reemergence in Brazil a few years ago. Other Penicillium toxins, including ochratoxin A, once considered to be a possible cause of Balkan endemic nephropathy, are treated in a historical context. The role of Fusarium toxins in human and animal health, especially T-2 toxin in alimentary toxic aleukia in Russia in the 1940s and fumonisins in equine leucoencephalomalasia, is set out in some detail. Finally, this paper documents the story of the research that led to our current understanding of the formation of aflatoxins in grains and nuts, due to the growth of Aspergillus flavus and its role, in synergy with the hepatitis B virus, in human liver cancer. During a period of climate change and greatly reduced crop diversity on a global basis, researchers tasked with monitoring the food system need to be aware of fungal toxins that might have been rare in their working careers that can reappear.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A review of the toxic effects and mechanisms of action of fumonisin B1.

              Fumonisin B(1) (FB(1)) is a mycotoxin produced by the fungus Fusarium verticillioides, which commonly infects corn and other agricultural products. Fusarium species can also be found in moisture-damaged buildings, and, therefore, exposure of humans to Fusarium mycotoxins including FB(1) may take place. FB(1) bears a clear structural similarity to the cellular sphingolipids, and this similarity has been shown to disturb the metabolism of sphingolipids by inhibiting the enzyme ceramide synthase leading to accumulation of sphinganine in cells and tissues. FB(1) is neurotoxic, hepatotoxic, and nephrotoxic in animals, and it has been classified as a possible carcinogen to humans. The cellular mechanisms behind FB(1)-induced toxicity include the induction of oxidative stress, apoptosis, and cytotoxicity, as well as alterations in cytokine expression. The effects of FB(1) on different parameters vary markedly depending on what types of cells are studied or what species they originate from. These aspects are important to consider when evaluating the toxic potential of FB(1).
                Bookmark

                Author and article information

                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                23 March 2018
                April 2018
                : 10
                : 4
                : 136
                Affiliations
                Platform for African-European Partnership in Agricultural Research for Development; FARA Secretariat, PMB CT 173 Cantonments, Accra, Ghana; fstepman@ 123456gmail.com
                Article
                toxins-10-00136
                10.3390/toxins10040136
                5923302
                29570687
                b60c2beb-29c8-4698-90b4-6a9614664e2e
                © 2018 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 06 February 2018
                : 13 March 2018
                Categories
                Perspective

                Molecular medicine
                food safety,aflatoxins,value chains,crop improvement,post-harvest management,maize,groundnuts

                Comments

                Comment on this article