10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polyglutamine length-dependent toxicity from α1ACT in Drosophila models of spinocerebellar ataxia type 6

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease that results from abnormal expansion of a polyglutamine (polyQ) repeat. SCA6 is caused by CAG triplet repeat expansion in the gene CACNA1A, resulting in a polyQ tract of 19-33 in patients. CACNA1A, a bicistronic gene, encodes the α1A calcium channel subunit and the transcription factor, α1ACT. PolyQ expansion in α1ACT causes degeneration in mice. We recently described the first Drosophila models of SCA6 that express α1ACT with a normal (11Q) or hyper-expanded (70Q) polyQ. Here, we report additional α1ACT transgenic flies, which express full-length α1ACT with a 33Q repeat. We show that α1ACT33Q is toxic in Drosophila, but less so than the 70Q version. When expressed everywhere, α1ACT33Q-expressing adults die earlier than flies expressing the normal allele. α1ACT33Q causes retinal degeneration and leads to aggregated species in an age-dependent manner, but at a slower pace than the 70Q counterpart. According to western blots, α1ACT33Q localizes less readily in the nucleus than α1ACT70Q, providing clues into the importance of polyQ tract length on α1ACT localization and its site of toxicity. We expect that these new lines will be highly valuable for future work on SCA6.

          Abstract

          Summary: The spinocerebellar ataxia type 6 (SCA6) protein, α1ACT, causes polyglutamine length-dependent toxicity and aggregation in new Drosophila transgenic lines, opening the door for additional studies of this disease.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31.

          The phiC31 integrase functions efficiently in vitro and in Escherichia coli, yeast, and mammalian cells, mediating unidirectional site-specific recombination between its attB and attP recognition sites. Here we show that this site-specific integration system also functions efficiently in Drosophila melanogaster in cultured cells and in embryos. Intramolecular recombination in S2 cells on transfected plasmid DNA carrying the attB and attP recognition sites occurred at a frequency of 47%. In addition, several endogenous pseudo attP sites were identified in the fly genome that were recognized by the integrase and used as substrates for integration in S2 cells. Two lines of Drosophila were created by integrating an attP site into the genome with a P element. phiC31 integrase injected into embryos as mRNA functioned to promote integration of an attB-containing plasmid into the attP site, resulting in up to 55% of fertile adults producing transgenic offspring. A total of 100% of these progeny carried a precise integration event at the genomic attP site. These experiments demonstrate the potential for precise genetic engineering of the Drosophila genome with the phiC31 integrase system and will likely benefit research in Drosophila and other insects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes.

            A major obstacle to creating precisely expressed transgenes lies in the epigenetic effects of the host chromatin that surrounds them. Here we present a strategy to overcome this problem, employing a Gal4-inducible luciferase assay to systematically quantify position effects of host chromatin and the ability of insulators to counteract these effects at phiC31 integration loci randomly distributed throughout the Drosophila genome. We identify loci that can be exploited to deliver precise doses of transgene expression to specific tissues. Moreover, we uncover a previously unrecognized property of the gypsy retrovirus insulator to boost gene expression to levels severalfold greater than at most or possibly all un-insulated loci, in every tissue tested. These findings provide the first opportunity to create a battery of transgenes that can be reliably expressed at high levels in virtually any tissue by integration at a single locus, and conversely, to engineer a controlled phenotypic allelic series by exploiting several loci. The generality of our approach makes it adaptable to other model systems to identify and modify loci for optimal transgene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of genes that modify ataxin-1-induced neurodegeneration.

              A growing number of human neurodegenerative diseases result from the expansion of a glutamine repeat in the protein that causes the disease. Spinocerebellar ataxia type 1 (SCA1) is one such disease-caused by expansion of a polyglutamine tract in the protein ataxin-1. To elucidate the genetic pathways and molecular mechanisms underlying neuronal degeneration in this group of diseases, we have created a model system for SCA1 by expressing the full-length human SCA1 gene in Drosophila. Here we show that high levels of wild-type ataxin-1 can cause degenerative phenotypes similar to those caused by the expanded protein. We conducted genetic screens to identify genes that modify SCA1-induced neurodegeneration. Several modifiers highlight the role of protein folding and protein clearance in the development of SCA1. Furthermore, new mechanisms of polyglutamine pathogenesis were revealed by the discovery of modifiers that are involved in RNA processing, transcriptional regulation and cellular detoxification. These findings may be relevant to the treatment of polyglutamine diseases and, perhaps, to other neurodegenerative diseases, such as Alzheimer's and Parkinson's disease.
                Bookmark

                Author and article information

                Journal
                Biol Open
                Biol Open
                bio
                biolopen
                Biology Open
                The Company of Biologists Ltd
                2046-6390
                15 December 2016
                9 December 2016
                9 December 2016
                : 5
                : 12
                : 1770-1775
                Affiliations
                [1 ]Department of Pharmacology, Wayne State University , Detroit, MI 48201, USA
                [2 ]Department of Neurology, University of Chicago , Chicago, IL 60637, USA
                [3 ]Department of Neurology, Wayne State University , Detroit, MI 48201, USA
                Author notes
                [* ]Author for correspondence ( stodi@ 123456med.wayne.edu )
                Author information
                http://orcid.org/0000-0003-4399-5549
                Article
                BIO021667
                10.1242/bio.021667
                5200913
                27979829
                b61436d0-889e-4a59-ad02-c52c3f593bbd
                © 2016. Published by The Company of Biologists Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                History
                : 6 September 2016
                : 17 October 2016
                Funding
                Funded by: National Institutes of Health, http://dx.doi.org/10.13039/100000002;
                Funded by: National Ataxia Foundation, http://dx.doi.org/10.13039/100002243;
                Funded by: National Institute of Neurological Disorders and Stroke, http://dx.doi.org/10.13039/100000065;
                Award ID: R01 NS086778
                Award ID: R01 NS33202
                Categories
                Research Article

                Life sciences
                ataxia,cacna1a,drosophila,gal4-uas,neurodegeneration,polyglutamine,spinocerebellar ataxia type 6 (sca6)

                Comments

                Comment on this article