15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genetic alteration of alpha 2C-adrenoceptor expression in mice: influence on locomotor, hypothermic, and neurochemical effects of dexmedetomidine, a subtype-nonselective alpha 2-adrenoceptor agonist.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          alpha 2-Adrenergic receptors (alpha 2-ARs) regulate many physiological functions and are targets for clinically important antihypertensive and anesthetic agents. Three human and mouse genes encoding alpha 2-AR subtypes (alpha 2A, alpha 2B, and alpha 2C) have been cloned. We investigated the involvement of the alpha 2C-AR in alpha 2-adrenergic pharmacology by applying molecular genetic techniques to alter the expression of alpha 2C-AR in mice. The effects of dexmedetomidine, a subtype-nonselective alpha 2-AR agonist, on monoamine turnover in brain and on locomotor activity were similar in mice with targeted inactivation of the alpha 2C-AR gene and in their controls, but the hypothermic effect of the alpha 2-AR agonist was significantly attenuated by the receptor gene inactivation. Correspondingly, another strain of transgenic mice with 3-fold overexpression of alpha 2C-AR in striatum and other brain regions expressing alpha 2C-AR showed normal reductions in brain monoamine metabolism and locomotor activity after dexmedetomidine, but their hypothermic response to the alpha 2C-AR agonists was significantly accentuated. The hypothermic effect of alpha 2-AR agonists thus seems to be mediated in part by alpha 2C-AR. Some small but statistically significant differences between the strains were also noted in brain dopamine metabolism. Lack of alpha 2C-AR expression was linked with reduced levels of homovanillic acid in brain, and mice with increased alpha 2C-AR expression had elevated concentrations of the dopamine metabolite compared with their controls.

          Related collections

          Author and article information

          Journal
          Mol. Pharmacol.
          Molecular pharmacology
          0026-895X
          0026-895X
          Jan 1997
          : 51
          : 1
          Affiliations
          [1 ] Department of Pnarmacology and Clinical Pharmacology, University of Turku, Finland.
          Article
          10.1124/mol.51.1.36
          9016344
          b616fb65-2261-4525-97bf-6d79c1422802
          History

          Comments

          Comment on this article