+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Effects of ad libitum Ingestion of Monosodium Glutamate on Weight Gain in C57BL6/J Mice

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Although the umami compound monosodium glutamate (MSG) is a widely used flavor enhancer, controversy still persists regarding the effects of MSG intake on body weight. It has been claimed, in particular, that chronic MSG intake may result in excessive body weight gain and obesity. In this study we assessed the effects of chronic (16 weeks) ad libitum MSG on body weight and metabolism of C57BL6/J mice. Adult male mice were divided in four experimental groups and fed with either a low-fat (LF) or high-fat (HF) diet and with either two bottles of plain water or one bottle containing 1% MSG and another one containing water according to a factorial design. Mice were monitored weekly for body weight and food/fluid intake for 15 weeks. At the end of the experiments, the circulating levels of leptin, insulin, total protein, total cholesterol, triglyceride, blood urea nitrogen, and non-esterified fatty acids were also analyzed. Our results show that MSG intake did not influence body weight in either LF or HF groups. Interestingly, although animals overall displayed strong preferences for MSG against water, preferences were relatively higher in LF compared to HF group. Consistent with the body weight data, while significant differences in leptin, insulin, total cholesterol, and non-esterified fatty acids were found between HF and LF groups, such an effect was not influenced by MSG intake. Finally, indirect calorimetry measurements revealed similar energy expenditure levels between animals being presented water only and MSG only. In summary, our data does not support the notion that ad libitum MSG intake should trigger the development of obesity or other metabolic abnormalities.

          Related collections

          Most cited references 7

          • Record: found
          • Abstract: not found
          • Article: not found

          Brain Lesions, Obesity, and Other Disturbances in Mice Treated with Monosodium Glutamate

           J W Olney (1969)
            • Record: found
            • Abstract: found
            • Article: not found

            Glutamate. Its applications in food and contribution to health.

             S Jinap,  P Hajeb (2010)
            This article reviews application of glutamate in food and its benefits and role as one of the common food ingredients used. Monosodium glutamate is one of the most abundant naturally occurring amino acids which frequently added as a flavor enhancer. It produced a unique taste that cannot be provided by other basic taste (saltiness, sourness, sweetness and bitterness), referred to as a fifth taste (umami). Glutamate serves some functions in the body as well, serving as an energy source for certain tissues and as a substrate for glutathione synthesis. Glutamate has the potential to enhance food intake in older individuals and dietary free glutamate evoked a visceral sensation from the stomach, intestine and portal vein. Small quantities of glutamate used in combination with a reduced amount of table salt during food preparation allow for far less salt to be used during and after cooking. Because glutamate is one of the most intensely studied food ingredients in the food supply and has been found safe, the Joint Expert Committee on Food Additives of the United Nations Food and Agriculture Organization and World Health Organization placed it in the safest category for food additives. Despite a widespread belief that glutamate can elicit asthma, migraine headache and Chinese Restaurant Syndrome (CRS), there are no consistent clinical data to support this claim. In addition, findings from the literature indicate that there is no consistent evidence to suggest that individuals may be uniquely sensitive to glutamate. 2010 Elsevier Ltd. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              Monosodium glutamate is not associated with obesity or a greater prevalence of weight gain over 5 years: findings from the Jiangsu Nutrition Study of Chinese adults.

              Animal studies and one large cross-sectional study of 752 healthy Chinese men and women suggest that monosodium glutamate (MSG) may be associated with overweight/obesity, and these findings raise public concern over the use of MSG as a flavour enhancer in many commercial foods. The aim of this analysis was to investigate a possible association between MSG intake and obesity, and determine whether a greater MSG intake is associated with a clinically significant weight gain over 5 years. Data from 1282 Chinese men and women who participated in the Jiangsu Nutrition Study were analysed. In the present study, MSG intake and body weight were quantitatively assessed in 2002 and followed up in 2007. MSG intake was not associated with significant weight gain after adjusting for age, sex, multiple lifestyle factors and energy intake. When total glutamate intake was added to the model, an inverse association between MSG intake and 5 % weight gain was found (P = 0.028), but when the model was adjusted for either rice intake or food patterns, this association was abolished. These findings indicate that when other food items or dietary patterns are accounted for, no association exists between MSG intake and weight gain.

                Author and article information

                S. Karger AG
                March 2011
                10 March 2011
                : 83
                : Suppl 1
                : 32-36
                aThe John B. Pierce Laboratory, Departments of bPsychiatry and cEpidemiology and Public Health, Yale University School of Medicine, New Haven, Conn., USA; dGraduate School of Agriculture, University of Kyoto, Kyoto, Japan
                Author notes
                *Ivan E. de Araujo, The John B. Pierce Laboratory and Yale University School of Medicine, 290 Congress Avenue, New Haven, CT 06519 (USA), Tel. +1 203 562 9901, ext. 204, Fax +1 203 624 4950, E-Mail IAraujo@jbpierce.org
                323405 Digestion 2011;83(suppl 1):32–36
                © 2011 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 3, Tables: 2, Pages: 5


                Comment on this article