37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Long Term Supplementation of Anabolic Androgen Steroids on Human Skeletal Muscle

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained morphological changes in human skeletal muscle, leading to physical performance enhancement.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis.

          Ageing in men is associated with a gradual decline in serum testosterone levels and a concomitant loss of muscle mass, accumulation of central adiposity, impaired mobility and increased risk of bone fractures. Whether androgen treatment might be beneficial in these subjects is still under debate. We have carried out a systematic review of randomized controlled trials (RCTs) evaluating the effects of testosterone (T) administration to middle-aged and ageing men on body composition, muscle strength, bone density, markers of bone metabolism and serum lipid profile. A comprehensive search of all published randomized clinical trials was performed using the MEDLINE, Cochrane Library, EMBASE and Current Contents databases. Guided by prespecified criteria, software-assisted data abstraction and quality assessed by two independent reviewers, 29 RCTs were found to be eligible. For each investigated variable, we reported the results of pooled estimates of testosterone treatment using the random effect model of meta-analysis. Heterogeneity, reproducibility and consistency of the findings across studies were explored using sensitivity and meta-regression analysis. Overall, 1,083 subjects were evaluated, 625 randomized to T, 427 to placebo and 31 to observation (control group). Weighted mean age was 64.5 years (range 49.9--77.6) and mean serum testosterone was 10.9 nmol/l (range 7.8--19). Testosterone treatment produced: (i) a reduction of 1.6 kg (CI: 2.5--0.6) of total body fat, corresponding to -6.2% (CI: 9.2--3.3) variation of initial body fat, (ii) an increase in fat free mass of 1.6 kg (CI: 0.6--2.6), corresponding to +2.7% (CI: 1.1--4.4) increase over baseline and (iii) no change in body weight. The effects of T on muscle strength were heterogeneous, showing a tendency towards improvement only at the leg/knee extension and handgrip of the dominant arm (pooled effect size=0.3 standard mean difference (SMD), CI: -0.0 to 0.6). Testosterone improved bone mineral density (BMD) at the lumbar spine by +3.7% (CI: 1.0--6.4%) compared to placebo, but not at the femoral neck, and produced a consistent reduction in bone resorption markers (pooled effect size = -0.6 SMD, CI: -1.0 to -0.2). Testosterone also reduced total cholesterol by 0.23 mmol/l (CI: -0.37 to -0.10), especially in men with lower baseline T concentrations, with no change in low density lipoprotein (LDL)-cholesterol. A significant reduction of high density lipoprotein (HDL)-cholesterol was found only in studies with higher mean T-values at baseline (-0.085 mmol/l, CI: -0.017 to -0.003). Sensitivity and meta-regression analysis revealed that the dose/type of T used, in particular the possibility of aromatization, explained the heterogeneity in findings observed on bone density and HDL-cholesterol among studies. The present analysis provides an estimate of the average treatment effects of testosterone therapy in middle-aged men. Our findings are sufficiently strong to justify further interventional studies focused on alternative targets of androgenic treatment carrying more stringent clinical implications, in particular the cardiovascular, metabolic and neurological systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of testosterone supplementation on functional mobility, cognition, and other parameters in older men: a randomized controlled trial.

            Serum testosterone levels decline significantly with aging. Testosterone supplementation to older men might beneficially affect the aging processes. To investigate the effect of testosterone supplementation on functional mobility, cognitive function, bone mineral density, body composition, plasma lipids, quality of life, and safety parameters in older men with low normal testosterone levels. Double-blind, randomized, placebo-controlled trial of 237 healthy men between the ages of 60 and 80 years with a testosterone level lower than 13.7 nmol/L conducted from January 2004 to April 2005 at a university medical center in the Netherlands. Participants were randomly assigned to receive 80 mg of testosterone undecenoate or a matching placebo twice daily for 6 months. Functional mobility (Stanford Health Assessment Questionnaire, timed get up and go test, isometric handgrip strength, isometric leg extensor strength), cognitive function (8 different cognitive instruments), bone mineral density of the hip and lumbar spine (dual-energy x-ray absorptiometry scanning), body composition (total body dual-energy x-ray absorptiometry and abdominal ultrasound of fat mass), metabolic risk factors (fasting plasma lipids, glucose, and insulin), quality of life (Short-Form Health 36 Survey and the Questions on Life Satisfaction Modules), and safety parameters (serum prostate-specific antigen level, ultrasonographic prostate volume, International Prostate Symptom score, serum levels of creatinine, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase, hemoglobin, and hematocrit). A total of 207 men completed the study. During the study, lean body mass increased and fat mass decreased in the testosterone group compared with the placebo group but these factors were not accompanied by an increase of functional mobility or muscle strength. Cognitive function and bone mineral density did not change. Insulin sensitivity improved but high-density lipoprotein cholesterol decreased; by the end of the study, 47.8% in the testosterone group vs 35.5% in the placebo group had the metabolic syndrome (P = .07). Quality-of-life measures were no different except for one hormone-related quality-of-life measure that improved. No negative effects on prostate safety were detected. Testosterone supplementation during 6 months to older men with a low normal testosterone concentration did not affect functional status or cognition but increased lean body mass and had mixed metabolic effects. isrctn.org Identifier: ISRCTN23688581.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy.

              Administration of replacement doses of testosterone to healthy hypogonadal men and supraphysiological doses to eugonadal men increases muscle size. To determine whether testosterone-induced increase in muscle size is due to muscle fiber hypertrophy, 61 healthy men, 18-35 yr of age, received monthly injections of a long-acting gonadotropin-releasing hormone (GnRH) agonist to suppress endogenous testosterone secretion and weekly injections of 25, 50, 125, 300, or 600 mg testosterone enanthate (TE) for 20 wk. Thigh muscle volume was measured by magnetic resonance imaging (MRI) scan, and muscle biopsies were obtained from vastus lateralis muscle in 39 men before and after 20 wk of combined treatment with GnRH agonist and testosterone. Administration of GnRH agonist plus TE resulted in mean nadir testosterone concentrations of 234, 289, 695, 1,344, and 2,435 ng/dl at the 25-, 50-, 125-, 300-, and 600-mg doses, respectively. Graded doses of testosterone administration were associated with testosterone dose and concentration-dependent increase in muscle volume measured by MRI (changes in vastus lateralis volume, -4, +7, +15, +32, and +48 ml at 25-, 50-, 125-, 300-, and 600-mg doses, respectively). Changes in cross-sectional areas of both type I and II fibers were dependent on testosterone dose and significantly correlated with total (r = 0.35, and 0.44, P < 0.0001 for type I and II fibers, respectively) and free (r = 0.34 and 0.35, P < 0.005) testosterone concentrations during treatment. The men receiving 300 and 600 mg of TE weekly experienced significant increases from baseline in areas of type I (baseline vs. 20 wk, 3,176 +/- 186 vs. 4,201 +/- 252 microm(2), P < 0.05 at 300-mg dose, and 3,347 +/- 253 vs. 4,984 +/- 374 microm(2), P = 0.006 at 600-mg dose) muscle fibers; the men in the 600-mg group also had significant increments in cross-sectional area of type II (4,060 +/- 401 vs. 5,526 +/- 544 microm(2), P = 0.03) fibers. The relative proportions of type I and type II fibers did not change significantly after treatment in any group. The myonuclear number per fiber increased significantly in men receiving the 300- and 600-mg doses of TE and was significantly correlated with testosterone concentration and muscle fiber cross-sectional area. In conclusion, the increases in muscle volume in healthy eugonadal men treated with graded doses of testosterone are associated with concentration-dependent increases in cross-sectional areas of both type I and type II muscle fibers and myonuclear number. We conclude that the testosterone induced increase in muscle volume is due to muscle fiber hypertrophy.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                10 September 2014
                : 9
                : 9
                : e105330
                Affiliations
                [1 ]Department of Surgical and Perioperative Sciences, Sports Medicine Unit and School of Sport Sciences, Umeå University, Umeå, Sweden
                [2 ]Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
                [3 ]Winternet, Boden, Sweden
                [4 ]Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
                West Virginia University School of Medicine, United States of America
                Author notes

                Competing Interests: Christer Malm has part-time employment at the non-profit organization (an economical union) Winternet, Boden, Sweden since 2001. Some of the work for the manuscript was executed using equipment at Winternet. All data, ethical permission, potential patents etc. are filed under Sports Medicine Unit, Umeå University (EPN nr 08–145M). Thus, all past and present data belong to Umeå University. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: CM AE YT PB. Performed the experiments: CM PS AE YT PB. Analyzed the data: JGY CM PS AE YT PB. Contributed reagents/materials/analysis tools: CM PS. Contributed to the writing of the manuscript: JGY CM PS AE YT PB.

                Article
                PONE-D-14-13011
                10.1371/journal.pone.0105330
                4160183
                25207812
                b622b76c-4156-4cfc-b85a-a26bd5cffd52
                Copyright @ 2014

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 28 March 2014
                : 20 July 2014
                Page count
                Pages: 11
                Funding
                This work was supported by grants from the Swedish National Centre for Research in Sports and WADA (Grant 08C15CM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Musculoskeletal System
                Muscles
                Skeletal Muscles
                Physiology
                Endocrine Physiology
                Endocrine-Related Substances
                Muscle Physiology
                Muscle Functions
                Medicine and Health Sciences
                Endocrinology
                Sports and Exercise Medicine
                Exercise
                Custom metadata
                The authors confirm that, for approved reasons, some access restrictions apply to the data underlying the findings. According to the permit from the ethical board for northern Sweden ( www.epn.se) at Umeå University (EPN Nr 08–145M) all samples must be stored within the Biological data bank at Umeå University, and all data must remain confidential. Data are available for researchers who meet the criteria for access to confidential data.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article