4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Multilayer multiconfiguration time-dependent Hartree method: implementation and applications to a Henon-Heiles hamiltonian and to pyrazine.

      The Journal of chemical physics
      AIP Publishing

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method is discussed and a fully general implementation for any number of layers based on the recursive ML-MCTDH algorithm given by Manthe [J. Chem. Phys. 128, 164116 (2008)] is presented. The method is applied first to a generalized Henon-Heiles (HH) hamiltonian. For 6D HH the overhead of ML-MCTDH makes the method slower than MCTDH, but for 18D HH ML-MCTDH starts to be competitive. We report as well 1458D simulations of the HH hamiltonian using a seven-layer scheme. The photoabsorption spectrum of pyrazine computed with the 24D hamiltonian of Raab et al. [J. Chem. Phys. 110, 936 (1999)] provides a realistic molecular test case for the method. Quick and small ML-MCTDH calculations needing a fraction of the time and resources of reference MCTDH calculations provide already spectra with all the correct features. Accepting slightly larger deviations, the calculation can be accelerated to take only 7 min. When pushing the method toward convergence, results of similar quality than the best available MCTDH benchmark, which is based on a wavepacket with 4.6×10(7)time-dependent coefficients, are obtained with a much more compact wavefunction consisting of only 4.5×10(5) coefficients and requiring a shorter computation time.

          Related collections

          Author and article information

          Journal
          21280715
          10.1063/1.3535541

          Comments

          Comment on this article

          scite_