4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Robust and stable transcriptional repression in Giardia using CRISPRi

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Giardia lamblia is a binucleate protistan parasite causing significant diarrheal disease worldwide. An inability to target Cas9 to both nuclei, combined with the lack of nonhomologous end joining and markers for positive selection, has stalled the adaptation of CRISPR/Cas9-mediated genetic tools for this widespread parasite. CRISPR interference (CRISPRi) is a modification of the CRISPR/Cas9 system that directs catalytically inactive Cas9 (dCas9) to target loci for stable transcriptional repression. Using a Giardia nuclear localization signal to target dCas9 to both nuclei, we developed efficient and stable CRISPRi-mediated transcriptional repression of exogenous and endogenous genes in Giardia. Specifically, CRISPRi knockdown of kinesin-2a and kinesin-13 causes severe flagellar length defects that mirror defects with morpholino knockdown. Knockdown of the ventral disk MBP protein also causes severe structural defects that are highly prevalent and persist in the population more than 5 d longer than defects associated with transient morpholino-based knockdown. By expressing two guide RNAs in tandem to simultaneously knock down kinesin-13 and MBP, we created a stable dual knockdown strain with both flagellar length and disk defects. The efficiency and simplicity of CRISPRi in polyploid Giardia allows rapid evaluation of knockdown phenotypes and highlights the utility of CRISPRi for emerging model systems.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          CRISPR interference (CRISPRi) for sequence-specific control of gene expression.

          Sequence-specific control of gene expression on a genome-wide scale is an important approach for understanding gene functions and for engineering genetic regulatory systems. We have recently described an RNA-based method, CRISPR interference (CRISPRi), for targeted silencing of transcription in bacteria and human cells. The CRISPRi system is derived from the Streptococcus pyogenes CRISPR (clustered regularly interspaced palindromic repeats) pathway, requiring only the coexpression of a catalytically inactive Cas9 protein and a customizable single guide RNA (sgRNA). The Cas9-sgRNA complex binds to DNA elements complementary to the sgRNA and causes a steric block that halts transcript elongation by RNA polymerase, resulting in the repression of the target gene. Here we provide a protocol for the design, construction and expression of customized sgRNAs for transcriptional repression of any gene of interest. We also provide details for testing the repression activity of CRISPRi using quantitative fluorescence assays and native elongating transcript sequencing. CRISPRi provides a simplified approach for rapid gene repression within 1-2 weeks. The method can also be adapted for high-throughput interrogation of genome-wide gene functions and genetic interactions, thus providing a complementary approach to RNA interference, which can be used in a wider variety of organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic minimalism in the early diverging intestinal parasite Giardia lamblia.

            The genome of the eukaryotic protist Giardia lamblia, an important human intestinal parasite, is compact in structure and content, contains few introns or mitochondrial relics, and has simplified machinery for DNA replication, transcription, RNA processing, and most metabolic pathways. Protein kinases comprise the single largest protein class and reflect Giardia's requirement for a complex signal transduction network for coordinating differentiation. Lateral gene transfer from bacterial and archaeal donors has shaped Giardia's genome, and previously unknown gene families, for example, cysteine-rich structural proteins, have been discovered. Unexpectedly, the genome shows little evidence of heterozygosity, supporting recent speculations that this organism is sexual. This genome sequence will not only be valuable for investigating the evolution of eukaryotes, but will also be applied to the search for new therapeutics for this parasite.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction

              Background Nuclear localization signals (NLSs) are stretches of residues within a protein that are important for the regulated nuclear import of the protein. Of the many import pathways that exist in yeast, the best characterized is termed the 'classical' NLS pathway. The classical NLS contains specific patterns of basic residues and computational methods have been designed to predict the location of these motifs on proteins. The consensus sequences, or patterns, for the other import pathways are less well-understood. Results In this paper, we present an analysis of characterized NLSs in yeast, and find, despite the large number of nuclear import pathways, that NLSs seem to show similar patterns of amino acid residues. We test current prediction methods and observe a low true positive rate. We therefore suggest an approach using hidden Markov models (HMMs) to predict novel NLSs in proteins. We show that our method is able to consistently find 37% of the NLSs with a low false positive rate and that our method retains its true positive rate outside of the yeast data set used for the training parameters. Conclusion Our implementation of this model, NLStradamus, is made available at:
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                mboc
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                01 January 2019
                : 30
                : 1
                : 119-130
                Affiliations
                [a ]Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
                University of Wisconsin
                Author notes

                These authors contributed equally to this work.

                *Address correspondence to: Scott C. Dawson ( scdawson@ 123456ucdavis.edu ).
                Article
                E18-09-0605
                10.1091/mbc.E18-09-0605
                6337905
                30379614
                b62e2b61-612a-49ba-b67b-5988b4f0ccf7
                © 2019 McInally, Hagen, et al. “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology.

                This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License.

                History
                : 03 October 2018
                : 22 October 2018
                Categories
                Articles
                Methods

                Molecular biology
                Molecular biology

                Comments

                Comment on this article