9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Vaccinia virus DNA ligase is nonessential for virus replication: recovery of plasmids from virus-infected cells.

      Biology
      Animals, Base Sequence, Blotting, Southern, Cell Line, DNA Ligases, genetics, metabolism, DNA, Viral, isolation & purification, Genes, Viral, Molecular Sequence Data, Mutagenesis, Insertional, Oligonucleotide Probes, Plasmids, Thymidine Kinase, Transfection, Vaccinia virus, enzymology, physiology, Virus Replication

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The essentiality of the vaccinia virus DNA ligase gene, SalF 15R, for virus growth was tested by insertional mutagenesis. A plasmid containing E. coli gpt inserted within a large deletion in the DNA ligase gene was transfected into vaccinia virus-infected cells and recombinant viruses selected by three cycles of plaque purification in the presence of mycophenolic acid (MPA). Surprisingly, in some isolates, which replicated in a manner indistinguishable from wild type (WT) virus, the WT gene was replaced by the gpt allele, demonstrating that the DNA ligase gene is nonessential for growth in cultured cells. In other isolates the entire plasmid was integrated into the virus genome by a single crossover event and a functional copy of the DNA ligase was retained. Southern blot analyses of the latter, drug-resistant viruses indicated extra DNA fragments, of sizes inconsistent with predicted viral structures, which represent the plasmid products of homologous recombination. Hirt extracts from cells infected with such multiply plaque purified virus isolates yielded plasmids that produced ampicillin-resistant colonies after transformation of E. coli. These plasmids were of two structures, representing either the original plasmid used for transfection, or a plasmid containing the WT ligase gene rescued by recombination with the virus genome. Similarly, insertional mutagenesis of the vaccinia virus thymidine kinase (TK) gene with gpt yielded plasmids containing mutant or wild type TK alleles when recombinant viruses were selected in MPA. Such plasmids were not isolated when TK minus viruses were selected in 5-bromodeoxyuridine (BUdR).

          Related collections

          Author and article information

          Comments

          Comment on this article