51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extracellular interaction between programmed death ligand-1 (PD-L1) and programmed cell death protein-1 (PD-1) leads to tumour-associated immune escape. Here we show that the immunosuppression activity of PD-L1 is stringently modulated by ubiquitination and N-glycosylation. We show that glycogen synthase kinase 3β (GSK3β) interacts with PD-L1 and induces phosphorylation-dependent proteasome degradation of PD-L1 by β-TrCP. In-depth analysis of PD-L1 N192, N200 and N219 glycosylation suggests that glycosylation antagonizes GSK3β binding. In this regard, only non-glycosylated PD-L1 forms a complex with GSK3β and β-TrCP. We also demonstrate that epidermal growth factor (EGF) stabilizes PD-L1 via GSK3β inactivation in basal-like breast cancer. Inhibition of EGF signalling by gefitinib destabilizes PD-L1, enhances antitumour T-cell immunity and therapeutic efficacy of PD-1 blockade in syngeneic mouse models. Together, our results link ubiquitination and glycosylation pathways to the stringent regulation of PD-L1, which could lead to potential therapeutic strategies to enhance cancer immune therapy efficacy.

          Abstract

          Programmed Death ligand-1 (PD-L1) protein mediates immune suppression in cancer. Here, the authors show that in breast cancer, PD-L1 expression can be up regulated post-translationally by glycosylation, which in turn acts through inhibiting GSK3β-mediated PD-L1 degradation.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors.

            The success in lung cancer therapy with programmed death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between EGF receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, CTL antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased CTLs and increased markers of T-cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T-cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape and mechanistically link treatment response to PD-1 inhibition. We show that autochthonous EGFR-driven lung tumors inhibit antitumor immunity by activating the PD-1/PD-L1 pathway to suppress T-cell function and increase levels of proinflammatory cytokines. These findings indicate that EGFR functions as an oncogene through non-cell-autonomous mechanisms and raise the possibility that other oncogenes may drive immune escape. ©2013 AACR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intracellular functions of N-linked glycans.

              N-linked oligosaccharides arise when blocks of 14 sugars are added cotranslationally to newly synthesized polypeptides in the endoplasmic reticulum (ER). These glycans are then subjected to extensive modification as the glycoproteins mature and move through the ER via the Golgi complex to their final destinations inside and outside the cell. In the ER and in the early secretory pathway, where the repertoire of oligosaccharide structures is still rather small, the glycans play a pivotal role in protein folding, oligomerization, quality control, sorting, and transport. They are used as universal "tags" that allow specific lectins and modifying enzymes to establish order among the diversity of maturing glycoproteins. In the Golgi complex, the glycans acquire more complex structures and a new set of functions. The division of synthesis and processing between the ER and the Golgi complex represents an evolutionary adaptation that allows efficient exploitation of the potential of oligosaccharides.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                30 August 2016
                2016
                : 7
                : 12632
                Affiliations
                [1 ]Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas 77030, USA
                [2 ]Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston , Houston, Texas 77030, USA
                [3 ]Core Facilities for Protein Structural Analysis, Academia Sinica , Taipei 115, Taiwan
                [4 ]Institute of Biological Chemistry, Academia Sinica , Taipei 115, Taiwan
                [5 ]Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
                [6 ]Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University , Taichung 404, Taiwan
                [7 ]Department of Biotechnology, Asia University , Taichung 413, Taiwan
                [8 ]Department of Pathology, The University of Texas MD Anderson Cancer Center , Houston, Texas 77030, USA
                [9 ]Department of Immunology, The University of Texas MD Anderson Cancer Center , Houston, Texas 77030, USA
                [10 ]Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas 77030, USA
                Author notes
                [*]

                These authors contributed equally to this work

                Author information
                http://orcid.org/0000-0002-4873-4412
                Article
                ncomms12632
                10.1038/ncomms12632
                5013604
                27572267
                b633807b-37b5-40b2-9d59-de46b3fc92d0
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 13 January 2016
                : 19 July 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article