69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Utilizing a Dynamical Description of IspH to Aid in the Development of Novel Antimicrobial Drugs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe 4S 4] 2+ IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings – both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts.

          Author Summary

          Drug resistance has recently entered into media conversations through the lens of MRSA (methicillin-resistant Staphylococcus aureus) infections, but conventional therapies are also failing to address resistance in cases of malaria and other bacterial infections, such as tuberculosis. To address these problems, we must develop new antibacterial and antimalarial medications. Our research focuses on understanding the structure and dynamics of IspH, an enzyme whose function is necessary for the survival of most bacteria and malaria-causing protozoans. Using computer simulations, we track how the structure of IspH changes in the presence and absence of its natural substrate. By inspecting the pockets that form in the normal motions of IspH, we propose a couple new routes by which new molecules may be developed to disrupt the function of IspH. It is our hope that these structural studies may be precursors to the development of novel therapies that may add to our current arsenal against bacterial and malarial infections.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          A modified TIP3P water potential for simulation with Ewald summation.

          The charges and Lennard-Jones parameters of the TIP3P water potential have been modified to improve its performance under the common condition for molecular dynamics simulations of using Ewald summation in lieu of relatively short nonbonded truncation schemes. These parameters were optimized under the condition that the hydrogen atoms do not have Lennard-Jones parameters, thus making the model independent of the combining rules used for the calculation of nonbonded, heteroatomic interaction energies, and limiting the number of Lennard-Jones calculations required. Under these conditions, this model provides accurate density (rho = 0.997 g/ml) and heat of vaporization (DeltaH(vap) = 10.53 kcal/mol) at 25 degrees C and 1 atm, but also provides improved structure in the second peak of the O-O radial distribution function and improved values for the dielectric constant (epsilon(0) = 89) and the diffusion coefficient (D = 4.0 x 10(-5) cm(2)/s) relative to the original parametrization. Like the original parameterization, however, this model does not show a temperature density maximum. Several similar models are considered with the additional constraint of trying to match the performance of the optimized potentials for liquid simulation atom force field to that obtained when using the simulation conditions under which it was originally designed, but no model was entirely satisfactory in reproducing the relative difference in free energies of hydration between the model compounds, phenol and benzene. Finally, a model that incorporates a long-range correction for truncated Lennard-Jones interactions is presented, which provides a very accurate dielectric constant (epsilon(0) = 76), however, the improvement in this estimate is on the same order as the uncertainty in the calculation. Copyright 2004 American Institute of Physics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Routine Access to Millisecond Time Scale Events with Accelerated Molecular Dynamics

            In this work, we critically assess the ability of the all-atom enhanced sampling method accelerated molecular dynamics (aMD) to investigate conformational changes in proteins that typically occur on the millisecond time scale. We combine aMD with the inherent power of graphics processor units (GPUs) and apply the implementation to the bovine pancreatic trypsin inhibitor (BPTI). A 500 ns aMD simulation is compared to a previous millisecond unbiased brute force MD simulation carried out on BPTI, showing that the same conformational space is sampled by both approaches. To our knowledge, this represents the first implementation of aMD on GPUs and also the longest aMD simulation of a biomolecule run to date. Our implementation is available to the community in the latest release of the Amber software suite (v12), providing routine access to millisecond events sampled from dynamics simulations using off the shelf hardware.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biosynthesis of isoprenoids via the non-mevalonate pathway.

              The mevalonate pathway for the biosynthesis of the universal terpenoid precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), is known in considerable detail. Only recently, the existence of a second mevalonate-independent pathway for the biosynthesis of IPP and DMAPP was detected in plants and certain eubacteria. Experiments with 13C and/or 2H-labelled precursors were crucial in the elucidation of this novel route. The pathway is essential in plants, many eubacteria and apicomplexan parasites, but not in archaea and animals. The genes, enzymes and intermediates of this pathway were rapidly unravelled over the past few years. Detailed knowledge about the mechanisms of this novel route may benefit the development of novel antibiotics, antimalarials and herbicides.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                December 2013
                December 2013
                19 December 2013
                : 9
                : 12
                : e1003395
                Affiliations
                [1 ]Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California, United States of America
                [2 ]Howard Hughes Medical Institute, University of California San Diego, La Jolla, California, United States of America
                [3 ]Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
                University of Houston, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: PGB CAFdO SLW JAM. Performed the experiments: PGB CAFdO SLW. Analyzed the data: PGB CAFdO. Contributed reagents/materials/analysis tools: PGB CAFdO SLW JAM. Wrote the paper: PGB CAFdO SLW JAM.

                Article
                PCOMPBIOL-D-13-01445
                10.1371/journal.pcbi.1003395
                3868525
                24367248
                b639789d-4de6-4373-a631-0b3830fbfd75
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 August 2013
                : 30 October 2013
                Page count
                Pages: 13
                Funding
                This work was supported in part by the NSF, NIH, HHMI, CTBP, NBCR and the NSF supercomputer centers (NIHGM31749; NSF MCB-1020765). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article