The present work deals with the development of electrically conductive cotton fabrics by in-situ deposition of copper particles. The dynamic light scattering, scanning electron microscope, and X-ray diffraction techniques were employed to study the morphology of deposited copper particles. The utility of conductive fabrics was analyzed for electromagnetic shielding ability over frequency range of 30 MHz to 1.5 GHz. The electromagnetic interference shielding was found to increase with increase in number of dips, which was attributed to increased reflection of EM waves due to dense, uniform, and percolated network of conductive copper particles on the surface. The sample produced from 100 and 150 dips exhibited the maximum shielding ability of 10 dB and 13 dB, respectively. Furthermore, the role of deposited copper particles on antibacterial properties was examined against pathogenic bacteria such as Staphylococcus aureus and Escherichia coli. The S. aureus showed more sensitivity towards copper particles as zone of inhibitions increased from 9.5 to 15.5 mm. At the end, the durability of fabrics was examined against washing after application of binder. The fabrics showed good retention of the copper particles, proved by scanning electron microscopic microstructures and small loss in the conductivity of the material after washing.