31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of oxytocin receptor gene ( OXTR) DNA methylation (DNAm) in human social and emotional functioning: a systematic narrative review

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The neuropeptide Oxytocin (OXT) plays a central role in birthing, mother-infant bonding and a broad range of related social behaviours in mammals. More recently, interest has extended to epigenetic programming of genes involved in oxytocinergic neurotransmission. This review brings together early findings in a rapidly developing field of research, examining relationships between DNA methylation (DNAm) of the Oxytocin Receptor Gene ( OXTR) and social and emotional behaviour in human populations.

          Method

          A systematic search across Web of Knowledge/Science, Scopus, Medline and EMBASE captured all published studies prior to June 2017 examining the association between OXTR DNAm and human social and emotional outcomes. Search terms included ‘oxytocin gene’ or ‘oxytocin receptor gene’ and ‘epigenetics’ or ‘DNA methylation’. Any article with a focus on social and emotional functioning was then identified from this set by manual review.

          Results

          Nineteen studies met eligibility criteria. There was considerable heterogeneity of study populations, tissue samples, instrumentation, measurement, and OXTR site foci. Only three studies examined functional consequences of OXTR DNAm on gene expression and protein synthesis. Increases in OXTR DNAm were associated with callous-unemotional traits in youth, social cognitive deficits in Autistic Spectrum Disorder (ASD), rigid thinking in anorexia nervosa, affect regulation problems, and problems with facial and emotional recognition. In contrast, reductions in DNAm were associated with perinatal stress, postnatal depression, social anxiety and autism in children.

          Conclusions

          Consistent with an emerging field of inquiry, there is not yet sufficient evidence to draw conclusions about the role of OXTR DNAm in human social and emotional behaviour. However, taken together, findings point to increased OXTR DNAm in general impairments in social, cognitive and emotional functioning, and decreased OXTR DNAm in specific patterns of impairment related to mood and anxiety disorders (but not in all). Future progress in this field would be enhanced by adequately powered designs, greater phenotypic precision, and methodological improvements including longitudinal studies with multiple time-points to facilitate causal inference.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Epigenome-Wide Scans Identify Differentially Methylated Regions for Age and Age-Related Phenotypes in a Healthy Ageing Population

          Introduction DNA methylation is an epigenetic mechanism that plays an important role in gene expression regulation, development, and disease. Increasing evidence points to the distinct contributions of genetic [1], [2], [3], [4], [5], environmental [6], [7], [8], and stochastic factors to DNA methylation levels at individual genomic regions. In addition, DNA methylation patterns at specific CpG-sites can also vary over time within an individual [9], [10] and correspondingly, age-related methylation changes have been identified in multiple tissues and organisms [11], [12], [13], [14], [15]. Although age-related changes in methylation have been implicated in healthy ageing and longevity, the causes and functional consequences of these remain unclear. Ageing is a complex process, which represents the progression of multiple degenerative processes within an individual. Studies in different organisms have identified many factors that contribute to lifespan and the rate of healthy ageing within an individual. These include components of biological mechanisms involved in cellular senescence, oxidative stress, DNA repair, protein glycation, and others (see [16]). Taking these into account, the concept of biological age has been proposed as a better predictor of lifespan and functional capacity than chronological age alone. Previous studies have proposed that certain traits can be used as measures of biological age [17] and have put forward a stringent definition of an ageing biomarker (see [18]). Here, we examined age-related phenotypes that have previously been considered biomarkers of ageing (see [19]), specifically white cell telomere length, blood pressure, lung function, grip strength, bone mineral density, parental longevity, parental age at reproduction, and serum levels of 5-dehydroepiandrosterone (DHEAS), cholesterol, albumin, and creatinine. Epigenetic studies of age-related phenotypes can help identify molecular changes that associate with the ageing process. Such changes may include both biological markers of accumulated stochastic damage in the organism, as well as specific susceptibility factors that may play a regulatory role. We explored the hypothesis that epigenetic changes contribute to the rate of ageing and potential longevity in a sample of 172 middle-aged female twins, where methylation profiles and age-DMRs were previously characterized in 93 individuals from the sample [14]. We compared DNA methylation patterns with chronological age in the sample of 172 individuals and related epigenetic variation to age-related phenotypes that have previously been used as biomarkers of ageing. We identified phenotype-associated DNA methylation changes and combined genetic, epigenetic, expression, and phenotype data to help understand the underlying mechanism of association between epigenetic variation, chronological age, and ageing-related traits. Results DNA methylation patterns in twins associate with genetic variants We characterized DNA methylation patterns in a sample of 172 female twins at 26,690 promoter CpG-sites that map uniquely across the genome. We observed that the majority of autosomal CpG-sites were un-methylated (beta 5% and an Impute info value of >0.8. Altogether, there were 2,054,344 directly genotyped and imputed autosomal SNPs used in the QTL analyses. Gene expression data Gene expression estimates and eQTLs from lymphoblastoid cell lines (LCLs) in the samples were obtained for 168 individuals in the study [21]. Gene expression levels were measured using the Illumina expression array HumanHT-12 version 3 as previously described [21]. Each sample had three technical replicates and log2 - transformed expression signals were quantile normalized first across the 3 replicates of each individual, followed by quantile normalization across all individuals [21]. We assigned methylation and expression probes to the gene with the nearest transcription start site using Refseq gene annotations. For each gene we obtained the mean methylation (or gene expression) estimate, by averaging values over multiple methylation (or gene expression) probes if more than one probe was assigned to that gene. There were altogether 435 genes nearest to the 490 age DMRs, of which 348 had transcription start sites within 2 kb of the methylation CpG-sites and for which we also had whole blood methylation data and LCLs gene expression data in 168 individuals. Linear mixed effects models and Spearman rank correlations were used to compare methylation and expression data per gene. Methylation QTL analyses We tested for methylation QTLs at 24,522 autosomal probes, which had at least one SNP within 50 kb of the probe that passed genotype QC criteria. We fitted a linear mixed-effects model, regressing the methylation levels at each probe on fixed-effect terms including genotype, methylation chip, and sample order on the methylation chip, and random-effect terms denoting family structure and zygosity. Prior to these analyses, the methylation values at each CpG-site were normalized to N(0,1). Results from meQTL analyses are presented at a false discovery rate (FDR) of 5%, estimated by permutation. Here, we permuted the methylation data at the 24,522 autosomal probes, performed cis association analyses on the permuted and normalized methylation data, and repeated this procedure for 10 replicates selecting the most associated SNP per probe per replicate. FDR was calculated as the fraction of significant hits in the permuted data compared to the observed data at each p-value threshold. DMR analyses Linear mixed effects models were used to assess evidence for DMRs. In the a-DMR analyses we regressed the raw methylation levels at each probe on fixed-effect terms including age, methylation chip, and sample order on the methylation chip, and random-effect terms denoting family structure and zygosity. To assess the significance of the a-DMRs we compared this model to a null model, which excluded age from the fixed-effects terms. In the ap-DMR analyses we regressed the raw methylation levels at each probe on fixed-effect terms including phenotype, methylation chip, and sample order on chip, and random-effect for family and zygosity, and compared the fit of this model to a null model which excluded the phenotype. We also performed the ap-DMR analyses by including age as a fixed effect covariate in both the null and alternative models. We also repeated both the a-DMR and ap-DMR analyses using normalized methylation levels (to N(0,1)) and observed that the reported DMRs were top-ranked in the normalized analyses. To assess genome-wide significance we performed 100 permutations and estimated FDR by calculating the fraction of significant hits in the permuted data compared to the observed data at a specific P-value threshold. Monozygotic twin DMR effects were calculated in the set of 21 MZ twin pairs where both twins were assayed within the same batch of methylation arrays. We estimated MZ-DMRs for 12 phenotypes where data were available in at least 12 MZ pairs. For each phenotype of interest we fitted a linear model comparing phenotype within-pair differences to methylation within-pair differences and reported the P-values obtained from the F-statistics from the overall regression. For the age-corrected analyses we fitted the regression including age as a covariate and compared the results to a null model, which included phenotype differences and age alone. We performed 100 replicates to estimate FDR 5% significant results as described above. At the FDR 5% significance threshold (nominal P = 2.03×10−6), we estimated 35% power to detect the observed correlation (Pearson correlation = 0.83) between methylation MZ-differences at cg01136458 in CSMD1 (mean MZ-beta-difference = 5%) and LDL MZ-differences (mean MZ-LDL-difference = 0.73 SD) in 20 MZ pairs. Age DMR replication The replication sample comprised 44 MZ twins discordant for psychosis, that were profiled on the Illumina 27K array as previously described [27]. The sample consisted of younger adults (age range 20–61, median age 28), including both female and male twin pairs. We compared methylation against age at the 490 a-DMRs both in the entire set of 44 twins and in the set of 22 unaffected unrelated individuals. In the set of 44 twins we fitted linear mixed effect models, regressing the normalized beta values per probe (normalized to N(0,1)) against methylation chip, sample order on the chip, sex, and age as fixed effects, and family as random effect. In the set of 22 unaffected unrelated individuals comprising the control twin from each pair we calculated Spearman rank correlation coefficients on the untransformed methylation beta values against age. Genome-wide association scans Genome-wide association scans were performed using linear mixed effects models for 12 phenotypes including telomere length, systolic blood pressure (SBP), diastolic blood pressure (DBP), FEV1 and FVC to examine lung function, grip strength, bone mineral density (BMD), serum levels of DHEAS, serum total cholesterol levels, serum high density cholesterol levels (HDL), calculated levels of serum low density cholesterol (LDL), serum albumin levels, and serum creatinine levels. Linear models were fit as described in the meQTL analyses section substituting phenotype for methylation, using an additive model. SNPs with evidence for association that surpassed P = 0.001, were considered in the overlap across cis-meQTL, genotype-phenotype, and DMR findings. Functional characterization of DMRs The 26,690 methylation probes were assigned to CpG islands according to previous definitions [54], resulting in 11,299 CpG sites that were in CpG islands and 15,391 that were outside of CpG islands. Histone modification ChIP-seq data were obtained from the Encode project from one CEPH HapMap LCL (GM12878) in the UCSC genome browser. Peaks in the genome-wide read-depth distribution from ChIP-seq histone modifications H3K9ac, H3K27ac, H3K27me3, H3K4me1, H3K4me2, and H3K4me3 were obtained as previously described (see [1]). Enrichment a-DMR estimates were calculated as the proportion of a-DMRs in each functional category (CpG islands or histone peaks) over the proportion of 26,690 probe in that functional category. Enrichment 95% confidence intervals were estimated using bootstrap percentile intervals of 1,000 re-samplings of the a-DMR data per annotation category. Gene ontology term enrichment analysis was performed using the GOrilla tool for identifying enriched GO terms in the ranked list of a-DMR genes [31], using Refseq gene annotations in the entire set of 26,690 probes as background. Supporting Information Figure S1 Summary characteristics of DNA methylation patterns in 172 female twins. Distribution of methylation scores (beta) in (A) autosomal and (B) X-chromosomal probes in all individuals. (PDF) Click here for additional data file. Figure S2 Distribution of intra-class correlation coefficients (ICC) in twins. Density plots of ICC in MZ twins (red) and DZ twins (blue) for two batches of methylation data (batch 1 consists of 93 twins (left) and batch 2 consists of 79 twins (right)). The mean MZ-ICCs and DZ-ICCs were estimated as 0.257 and 0.168 in batch 1 (MZ-ICC vs DZ-ICC P<2×10−16), and as 0.3557 and 0.261 in batch 2 (MZ-ICC vs DZ-ICC P<2×10−16). The corresponding methylation probe heritabilities were calculated as 2(ICC_MZ - ICC_DZ) and the genome-wide estimates were 0.176 (95%CI:0.168–0.185) and 0.188 (95%CI:0.180–0.196) for the data in batch 1 (left) and batch 2 (right), respectively. (PDF) Click here for additional data file. Figure S3 Correlation across age-related phenotypes. Below diagonal plots represent each pair of phenotypes and the corresponding rank correlation coefficient is shown above the diagonal. (PDF) Click here for additional data file. Figure S4 EWAS results for age-related phenotypes. FDR 5% ap-DMRs were obtained for (A) LDL, (B) lung function (FVC), and (C) maternal longevity (MLONG) with (green) and without (blue) age-correction. Red dashed lines correspond to age-corrected (A) and non-age-corrected (B,C) analysis FDR 5% levels. (PDF) Click here for additional data file. Figure S5 Lack of enrichment of age-related phenotype DMR association in the set of age DMRs. (PDF) Click here for additional data file. Figure S6 Evidence for co-methylation. Spearman correlation in methylation levels between all pair-wise CpG-sites (black) and between a-DMR CpG-sites (red) in the sample of 172 related individuals (solid line) and a subset of 96 unrelated individuals (dotted line). (PDF) Click here for additional data file. Table S1 List of 490 a-DMRs. (XLS) Click here for additional data file. Table S2 Descriptive statistics of the age-related phenotypes. (XLS) Click here for additional data file. Table S3 List of 19 a-DMRs associated with proportion of lymphocytes. (XLS) Click here for additional data file. Table S4 Overlap across genotype-methylation (cis-meQTLs), methylation-phenotype (ap-DMRs), and genotype-phenotype (GWAS) association results. (XLS) Click here for additional data file. Table S5 JASPAR motif search results in the set of a-DMR genes. Results are shown at P = 0.05 threshold. (XLS) Click here for additional data file. Table S6 Gene Ontology term enrichment results in the set of a-DMR genes. GO term enrichment in a-DMR genes was assessed relative to the background set of 14,344 genes that map nearest to the 26,690 probes tested. Results are shown at P = 1e-6 for biological processes and molecular functions. (XLS) Click here for additional data file.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxytocin attenuates amygdala responses to emotional faces regardless of valence.

            Oxytocin is known to reduce anxiety and stress in social interactions as well as to modulate approach behavior. Recent studies suggest that the amygdala might be the primary neuronal basis for these effects. In a functional magnetic resonance imaging study using a double-blind, placebo-controlled within-subject design, we measured neural responses to fearful, angry, and happy facial expressions after intranasal application of 24 IU oxytocin compared with placebo. Oxytocin reduced right-sided amygdala responses to all three face categories even when the emotional content of the presented face was not evaluated explicitly. Exploratory whole brain analysis revealed modulatory effects in prefrontal and temporal areas as well as in the brainstem. Results suggest a modulatory role of oxytocin on amygdala responses to facial expressions irrespective of their valence. Reduction of amygdala activity to positive and negative stimuli might reflect reduced uncertainty about the predictive value of a social stimulus and thereby facilitates social approach behavior.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxytocin Pathway Genes: Evolutionary Ancient System Impacting on Human Affiliation, Sociality, and Psychopathology.

              Oxytocin (OT), a nonapeptide signaling molecule originating from an ancestral peptide, appears in different variants across all vertebrate and several invertebrate species. Throughout animal evolution, neuropeptidergic signaling has been adapted by organisms for regulating response to rapidly changing environments. The family of OT-like molecules affects both peripheral tissues implicated in reproduction, homeostasis, and energy balance, as well as neuromodulation of social behavior, stress regulation, and associative learning in species ranging from nematodes to humans. After describing the OT-signaling pathway, we review research on the three genes most extensively studied in humans: the OT receptor (OXTR), the structural gene for OT (OXT/neurophysin-I), and CD38. Consistent with the notion that sociality should be studied from the perspective of social life at the species level, we address human social functions in relation to OT-pathway genes, including parenting, empathy, and using social relationships to manage stress. We then describe associations between OT-pathway genes with psychopathologies involving social dysfunctions such as autism, depression, or schizophrenia. Human research particularly underscored the involvement of two OXTR single nucleotide polymorphisms (rs53576, rs2254298) with fewer studies focusing on other OXTR (rs7632287, rs1042778, rs2268494, rs2268490), OXT (rs2740210, rs4813627, rs4813625), and CD38 (rs3796863, rs6449197) single nucleotide polymorphisms. Overall, studies provide evidence for the involvement of OT-pathway genes in human social functions but also suggest that factors such as gender, culture, and early environment often confound attempts to replicate first findings. We conclude by discussing epigenetics, conceptual implications within an evolutionary perspective, and future directions, especially the need to refine phenotypes, carefully characterize early environments, and integrate observations of social behavior across ecological contexts.
                Bookmark

                Author and article information

                Contributors
                cmaud@deakin.edu.au
                joanne.ryan@mcri.edu.au
                mcintosh@familytransitions.com.au
                craig.olsson@rch.org.au
                Journal
                BMC Psychiatry
                BMC Psychiatry
                BMC Psychiatry
                BioMed Central (London )
                1471-244X
                29 May 2018
                29 May 2018
                2018
                : 18
                : 154
                Affiliations
                [1 ]ISNI 0000 0001 0526 7079, GRID grid.1021.2, Deakin University Geelong, Centre for Social and Early Emotional Development, Faculty of Health, School of Psychology, ; 221 Burwood Highway, Burwood, VIC 3125 Australia
                [2 ]ISNI 0000 0000 9442 535X, GRID grid.1058.c, Murdoch Children’s Research Institute, The Royal Children’s Hospital, ; Parkville, VIC 3052 Australia
                [3 ]ISNI 0000 0001 2179 088X, GRID grid.1008.9, Department of Paediatrics, , The University of Melbourne, ; Melbourne, VIC 3052 Australia
                [4 ]ISNI 0000 0004 1936 7857, GRID grid.1002.3, Department of Epidemiology and Preventative Medicine, , School of Public Health and Preventative Medicine, Monash University, ; Prahran, VIC 3004 Australia
                Author information
                http://orcid.org/0000-0003-4149-3481
                Article
                1740
                10.1186/s12888-018-1740-9
                5975530
                29843655
                b641d633-7a15-4199-87e0-27e3d5eb2693
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 12 December 2017
                : 11 May 2018
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2018

                Clinical Psychology & Psychiatry
                dna methylation,epigenetics,human behaviour,oxytocin gene,oxytocin receptor gene

                Comments

                Comment on this article