24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Non-growing follicle density is increased following adriamycin, bleomycin, vinblastine and dacarbazine (ABVD) chemotherapy in the adult human ovary

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Do the chemotherapeutic regimens of ABVD (adriamycin, bleomycin, vinblastine and dacarbazine) or OEPA-COPDAC (combined vincristine, etoposide, prednisone, doxorubicin (OEPA) and cyclophosphamide, vincristine, prednisone, dacarbazine (COPDAC)) used to treat Hodgkin lymphoma (HL), affect the density, morphology and in vitro developmental potential of human ovarian follicles?

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Editorial

          The mission of The Journal of General Physiology is to publish articles that elucidate basic biological, chemical, and physical principles of broad physiological significance. Physiological significance usually means mechanistic insights, which often are obtained only after extensive analysis of the experimental results. The significance of the mechanistic insights therefore can be no better than the validity of the theoretical framework used for the analysis—and it is usually better to be vaguely right than precisely wrong. The uncertainties associated with data analysis are well illustrated in the Perspectives on Ion Permeation through membrane-spanning channels (J. Gen. Physiol. 113:761–794) and the related Letters-to-the-Editor in this issue. This exchange moreover identified a particular problem that can be resolved by a change in editorial policy. The problem is the graphic representation of the results of kinetic analyses of ion permeation based on discrete-state rate models—and similar kinetic analyses of other physiological processes. It seems to have become de rigueur to summarize such results in a so-called energy profile (see Fig. 1), where the rate constants (k) deduced from the kinetic analysis are converted into free energies (ΔG ‡)—almost invariably using Eyring's transition state theory (TST): 1 \documentclass[10pt]{article} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{pmc} \usepackage[Euler]{upgreek} \pagestyle{empty} \oddsidemargin -1.0in \begin{document} \begin{equation*}{\mathrm{{\Delta}}}G^{{\mathrm{{\ddagger}}}}=-k_{{\mathrm{B}}}T{\cdot}{\mathrm{ln}} \left \left[k{\cdot} \left \left({h}/{k}_{{\mathrm{B}}}T\right) \right \right] \right {\mathrm{,}}\end{equation*}\end{document} where k B is Boltzmann's constant, T the temperature in kelvin, and h Planck's constant. The problems arise because will be valid only for elementary transitions; e.g., transitions over distances less than the mean free path in aqueous solutions, ∼0.1 Å. Whether or not one can use a discrete-state rate model to analyze a permeation process, for example, the (in)validity of depends primarily on the distances ions have to traverse in the transitions between the different kinetic states. The limitations inherent in the use of are well known, but energy profiles have taken on a life of their own because they provide a convenient graphic representation of the results, as opposed to the more tedious (albeit more correct) tabulation of the rate constants. Assuming the experimental results justify the use of a discrete-state model, which would entail a demonstration that the model and the deduced rate constants satisfactorily describe the results, the problem becomes, how can one represent the results graphically in a manner that avoids the errors associated with the use of ? One such representation of linear kinetic schemes can be implemented by noting that free energy profiles based on the Eyring TST (i.e., on the use of ) formally can be expressed as: 2 \documentclass[10pt]{article} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{pmc} \usepackage[Euler]{upgreek} \pagestyle{empty} \oddsidemargin -1.0in \begin{document} \begin{equation*}{\mathrm{{\Delta}}}G \left \left(p\right) \right =-k_{{\mathrm{B}}}T{\cdot}{\mathrm{ln}} \left \frac{{\prod_{{\mathrm{i}}=1,3,{\mathrm{{\ldots}}}}^{p}} \left \left[{k_{{\mathrm{i}}}}/{ \left \left({k_{{\mathrm{B}}}T}/{h}\right) \right }\right] \right }{{\prod_{{\mathrm{i}}=2,4,{\mathrm{{\ldots}}}}^{p}} \left \left[{k_{{\mathrm{i}}}}/{ \left \left({k_{{\mathrm{B}}}T}/{h}\right) \right }\right] \right } \right {\mathrm{,}}\end{equation*}\end{document} where p (= 1, 2,…,n, where n is the total number of rate constants in the scheme) denotes the sequential position of the energy peaks and wells in the kinetic scheme (beginning with the first peak and ending outside the pore on the other side), and k i is the ith rate constant in the scheme (forward rate constants are odd numbered and reverse rate constants are even numbered). That is, ΔG(p) for p = 1, 3,…, n − 1 denotes the peak energies, whereas ΔG(p) for p = 2, 4,…, n denotes the well energies. The interrupted line in Fig. 1 (right-hand ordinate) shows such an energy profile. The generalization of is immediate, as the rate constant “profile” along the kinetic scheme can be represented by the function: 3 \documentclass[10pt]{article} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{pmc} \usepackage[Euler]{upgreek} \pagestyle{empty} \oddsidemargin -1.0in \begin{document} \begin{equation*}RCR_{{\mathit{ff}}} \left \left(p\right) \right =-{\mathrm{log}} \left \frac{{\prod_{{\mathrm{i}}=1,3,{\mathrm{{\ldots}}}}^{p}} \left \left({k_{{\mathrm{i}}}}/{ff}\right) \right }{{\prod_{{\mathrm{i}}=2,4,{\mathrm{{\ldots}}}}^{p}} \left \left({k_{{\mathrm{i}}}}/{ff}\right) \right } \right {\mathrm{,}}\end{equation*}\end{document} where ff is an arbitrary “frequency factor.” The three lines in Fig. 1 (left-hand ordinate) show rate constant representations (RCR) for ff = 1, 109, and 6 · 1012 s−1 (= k B T/h). (ff = 1 s−1 denotes the simplest version of , ff = 109 s−1 was chosen to approximate the frequency of diffusional transitions over a distance of 1 nm, and ff = k B T/h was chosen for comparison to .) It is instructive to consider briefly some features of and Fig. 1. First, the heights of the “peaks” vary with the choice of ff. The peaks shift in parallel up or down as ff is increased or decreased, which serves to emphasize how arbitrary a “barrier height” is—and to underscore the difficulties inherent in deducing an energy profile from a set of rate constants (compare Fig. 1 and the two different energy profiles deduced for ff = 6 · 1012 and 109 s−1). Second, the differences in height among the peaks are invariant, suggesting that they have mechanistic significance. It is unlikely that the frequency factors associated with each barrier crossing will be identical, however, and one cannot relate differences in peak height to differences in free energy without knowing the variation in ff. Third, the “well” depths relative to the electrolyte solution outside the pore are invariant, again suggesting that they have mechanistic significance. The different behaviors of the peaks and “wells” arise because of the qualitative difference between RCRff (p) for odd and even p: only for odd p does the value of RCRff (p) depend on ff. Visually, the peaks probably should be above the wells; compare the profile for ff = 1 s−1 vs. those for ff = 109 and 6 · 1012 s−1, which justifies the use of physically plausible, albeit arbitrary, frequency factors. applies generally, meaning that it is possible to provide graphic representations of the results of kinetic analyses without invoking the Eyring TST to describe situations where that theory is inapplicable—whether it be ion permeation, channel gating, protein conformational transitions, or other physiological processes. The Journal of General Physiology therefore will publish rate constant representations based on , or some equivalent, but will no longer publish energy profiles deduced from kinetic analyses unless the authors explicitly justify their choice of the underlying model using “generally accepted” physico-chemical reasoning. Olaf Sparre Andersen Editor The Journal of General Physiology
            • Record: found
            • Abstract: found
            • Article: not found

            Toxicity of chemotherapy and radiation on female reproduction.

            One of the most devastating consequences of cancer treatment in the young female population is ovarian damage, resulting in diminished fertility potential. The extent of damage is related to age, chemotherapeutic regimen, and dose of pelvic radiation received. It is crucial that physicians know the impact each of these factors has on future fertility to advice patients on fertility preservation options. Anticancer drugs injure the female reproductive system through ovarian follicular and stromal damage. Although the exact mechanisms of damage remain unclear, it is essential to better understand these mechanisms to develop methods to diminish ovarian injury.
              • Record: found
              • Abstract: found
              • Article: not found

              Cancer treatment and gonadal function: experimental and established strategies for fertility preservation in children and young adults.

              Preservation of gonadal function is an important priority for the long-term health of cancer survivors of both sexes and all ages at treatment. Loss of opportunity for fertility is a prime concern in both male and female cancer survivors, but endocrine effects of gonadal damage are likewise central to long-term health and wellbeing. Some fertility preservation techniques, such as semen and embryo cryopreservation, are established and successful in adults, and development of oocyte vitrification has greatly improved the potential to cryopreserve unfertilised oocytes. Despite being recommended for all pubertal male patients, sperm banking is not universally practised in paediatric oncology centres, and very few adolescent-friendly facilities exist. All approaches to fertility preservation have specific challenges in children and teenagers, including ethical, practical, and scientific issues. For young women, cryopreservation of ovarian cortical tissue with later replacement has resulted in at least 40 livebirths, but is still regarded as experimental in most countries. For prepubertal boys, testicular biopsy cryopreservation is offered in some centres, but how that tissue might be used in the future is unclear, and so far no evidence suggests that fertility can be restored. For both sexes, these approaches involve an invasive procedure and have an uncertain risk of tissue contamination in haematological and other malignancies. Decision making for all these approaches needs assessment of the individual's risk of fertility loss, and is made at a time of emotional distress. Development of this specialty needs better provision of information for patients and their medical teams, and improvements in service provision, to match technical and scientific advances.

                Author and article information

                Journal
                Human Reproduction
                Hum. Reprod.
                Oxford University Press (OUP)
                0268-1161
                1460-2350
                December 05 2016
                :
                :
                Article
                10.1093/humrep/dew260
                27923859
                b6573dd8-3571-4004-a71d-2834b191fb34
                © 2016
                History

                Comments

                Comment on this article

                Related Documents Log