13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative study of gut microbiota in Tibetan wild asses ( Equus kiang) and domestic donkeys ( Equus asinus) on the Qinghai-Tibet plateau

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tibetan wild asses ( Equus Kiang) are the only wild species of perissodactyls on the Qinghai-Tibet Plateau and appears on the International Union for Conversation of Nature (IUCN) 2012 Red List of threatened species. Therefore, understanding the gut microbiota composition and function of wild asses can provide a theoretical for the situ conservation of wild animals in the future.In this study, we measured the dry matter digestion by the 4 molar hydrochloric acid (4N HCL) acid-insoluble ash method and analyzed the intestinal microbiota of wild asses and domestic donkeys by high-throughput sequencing of the 16s rDNA genes in V3–V4 regions. The results showed that the dry matter digestion in wild asses was significantly higher than in domestic donkeys ( P < 0.05). No significant difference in alpha diversity was detected between these two groups. Beta diversity showed that the bacterial community structure of wild asses was acutely different from domestic donkeys. At the phylum level, the two dominant phyla Bacteroidetes and Firmicutes in wild asses were significantly higher than that in domestic donkeys. At the genus level, Ruminococcaceae_NK4A214, Phascolarctobacterium, Coprostanoligenes_group, Lachnospiraceae_XPB1014_group and Akkermansia in wild asses were significantly higher than in domestic donkeys. Moreover, statistical comparisons showed that 40 different metabolic pathways exhibited significant differences. Among them, 29 pathways had richer concentrations in wild asses than domestic donkeys, mainly included amino acid metabolism, carbohydrate metabolism, and energy metabolism. Of note, network analysis showed that wild asses harbored a relatively more complex bacterial network than domestic donkeys, possibly reflecting the specific niche adaption of gut bacterial communities through species interactions. The overall results indicated that wild asses have advantages over domestic donkeys in dry matter digestion, gut microbial community composition and function, and wild asses have their unique intestinal flora to adapt high altitudes on the Qinghai-Tibet plateau.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbes inside--from diversity to function: the case of Akkermansia.

            The human intestinal tract is colonized by a myriad of microbes that have developed intimate interactions with the host. In healthy individuals, this complex ecosystem remains stable and resilient to stressors. There is significant attention on the understanding of the composition and function of this intestinal microbiota in health and disease. Current developments in metaomics and systems biology approaches allow to probe the functional potential and activity of the intestinal microbiota. However, all these approaches inherently suffer from the fact that the information on macromolecules (DNA, RNA and protein) is collected at the ecosystem level. Similarly, all physiological and other information collected from isolated strains relates to pure cultures grown in vitro or in gnotobiotic systems. It is essential to integrate these two worlds of predominantly chemistry and biology by linking the molecules to the cells. Here, we will address the integration of omics- and culture-based approaches with the complexity of the human intestinal microbiota in mind and the mucus-degrading bacteria Akkermansia spp. as a paradigm.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Comparison of the Fecal Microbiota of Healthy Horses and Horses with Colitis by High Throughput Sequencing of the V3-V5 Region of the 16S rRNA Gene

              The intestinal tract houses one of the richest and most complex microbial populations on the planet, and plays a critical role in health and a wide range of diseases. Limited studies using new sequencing technologies in horses are available. The objective of this study was to characterize the fecal microbiome of healthy horses and to compare the fecal microbiome of healthy horses to that of horses with undifferentiated colitis. A total of 195,748 sequences obtained from 6 healthy horses and 10 horses affected by undifferentiated colitis were analyzed. Firmicutes predominated (68%) among healthy horses followed by Bacteroidetes (14%) and Proteobacteria (10%). In contrast, Bacteroidetes (40%) was the most abundant phylum among horses with colitis, followed by Firmicutes (30%) and Proteobacteria (18%). Healthy horses had a significantly higher relative abundance of Actinobacteria and Spirochaetes while horses with colitis had significantly more Fusobacteria. Members of the Clostridia class were more abundant in healthy horses. Members of the Lachnospiraceae family were the most frequently shared among healthy individuals. The species richness reported here indicates the complexity of the equine intestinal microbiome. The predominance of Clostridia demonstrates the importance of this group of bacteria in healthy horses. The marked differences in the microbiome between healthy horses and horses with colitis indicate that colitis may be a disease of gut dysbiosis, rather than one that occurs simply through overgrowth of an individual pathogen.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                4 June 2020
                2020
                : 8
                : e9032
                Affiliations
                [1 ]Northwest Institute of Plateau Biology, Chinese Academy of Sciences , Xining, Qinghai Province, China
                [2 ]Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences , Xining, Qinghai Province, China
                [3 ]University of Chinese Academy of Science , Beijing, China
                Article
                9032
                10.7717/peerj.9032
                7276150
                32547852
                b65fa3f4-8079-4348-acae-6819a3a8424b
                ©2020 Liu et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 8 January 2020
                : 31 March 2020
                Funding
                Funded by: National Key Research and Development Program of China
                Award ID: 2018YFD0502301
                Funded by: National Natural Science Foundation of China
                Award ID: 31402120
                Funded by: Key R&D and transformation plan of Qinghai Province
                Award ID: 2019-SF-153
                Funded by: 2018 Talent Training Program of CAS
                This work was supported by the National Key Research and Development Program of China (No. 2018YFD0502301), the National Natural Science Foundation of China (No. 31402120), the Key R&D and transformation plan of Qinghai Province (No. 2019-SF-153), and “The Dawn of West China” 2018 Talent Training Program of CAS by Dongdong Chen. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Microbiology
                Zoology
                Nutrition

                qinghai-tibet plateau,tibetan wild asses,domestic donkeys,16s ribosomal rna gene,gut microbiota,acid-insoluble ash

                Comments

                Comment on this article