19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Empirical Distributions of F ST from Large-Scale Human Polymorphism Data

      research-article
      1 , 2 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies of the apportionment of human genetic variation have long established that most human variation is within population groups and that the additional variation between population groups is small but greatest when comparing different continental populations. These studies often used Wright’s F ST that apportions the standardized variance in allele frequencies within and between population groups. Because local adaptations increase population differentiation, high- F ST may be found at closely linked loci under selection and used to identify genes undergoing directional or heterotic selection. We re-examined these processes using HapMap data. We analyzed 3 million SNPs on 602 samples from eight worldwide populations and a consensus subset of 1 million SNPs found in all populations. We identified four major features of the data: First, a hierarchically F ST analysis showed that only a paucity (12%) of the total genetic variation is distributed between continental populations and even a lesser genetic variation (1%) is found between intra-continental populations. Second, the global F ST distribution closely follows an exponential distribution. Third, although the overall F ST distribution is similarly shaped (inverse J), F ST distributions varies markedly by allele frequency when divided into non-overlapping groups by allele frequency range. Because the mean allele frequency is a crude indicator of allele age, these distributions mark the time-dependent change in genetic differentiation. Finally, the change in mean- F ST of these groups is linear in allele frequency. These results suggest that investigating the extremes of the F ST distribution for each allele frequency group is more efficient for detecting selection. Consequently, we demonstrate that such extreme SNPs are more clustered along the chromosomes than expected from linkage disequilibrium for each allele frequency group. These genomic regions are therefore likely candidates for natural selection.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular signatures of natural selection.

          There is an increasing interest in detecting genes, or genomic regions, that have been targeted by natural selection. The interest stems from a basic desire to learn more about evolutionary processes in humans and other organisms, and from the realization that inferences regarding selection may provide important functional information. This review provides a nonmathematical description of the issues involved in detecting selection from DNA sequences and SNP data and is intended for readers who are not familiar with population genetic theory. Particular attention is placed on issues relating to the analysis of large-scale genomic data sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Linkage disequilibrium in the human genome.

            With the availability of a dense genome-wide map of single nucleotide polymorphisms (SNPs), a central issue in human genetics is whether it is now possible to use linkage disequilibrium (LD) to map genes that cause disease. LD refers to correlations among neighbouring alleles, reflecting 'haplotypes' descended from single, ancestral chromosomes. The size of LD blocks has been the subject of considerable debate. Computer simulations and empirical data have suggested that LD extends only a few kilobases (kb) around common SNPs, whereas other data have suggested that it can extend much further, in some cases greater than 100 kb. It has been difficult to obtain a systematic picture of LD because past studies have been based on only a few (1-3) loci and different populations. Here, we report a large-scale experiment using a uniform protocol to examine 19 randomly selected genomic regions. LD in a United States population of north-European descent typically extends 60 kb from common alleles, implying that LD mapping is likely to be practical in this population. By contrast, LD in a Nigerian population extends markedly less far. The results illuminate human history, suggesting that LD in northern Europeans is shaped by a marked demographic event about 27,000-53,000 years ago.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differential confounding of rare and common variants in spatially structured populations

              Well-powered genome-wide association studies, now possible through advances in technology and large-scale collaborative projects, promise to reveal the contribution of rare variants to complex traits and disease. However, while population structure is a known confounder of association studies, it is unknown whether methods developed to control stratification are equally effective for rare variants. Here we demonstrate that rare variants can show a systematically different and typically stronger stratification than common variants, and that this is not necessarily corrected by existing methods. We show that the same process leads to inflation for load-based tests and can obscure signals at truly associated variants. We show that populations can display spatial structure in rare variants even when FST is low, but that allele-frequency dependent metrics of allele sharing can reveal localized stratification. These results underscore the importance of collecting and integrating spatial information in the genetic analysis of complex traits.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                21 November 2012
                : 7
                : 11
                : e49837
                Affiliations
                [1 ]Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
                [2 ]McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
                Aarhus University, Denmark
                Author notes

                Competing Interests: The author has declared that no competing interests exist.

                Conceived and designed the experiments: EE. Performed the experiments: EE. Analyzed the data: EE. Contributed reagents/materials/analysis tools: EE. Wrote the paper: EE.

                Article
                PONE-D-12-05805
                10.1371/journal.pone.0049837
                3504095
                23185452
                b6618303-03ee-4285-acad-4616686a697b
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 February 2012
                : 12 October 2012
                Page count
                Pages: 12
                Funding
                The work of EE was supported by in part by NIH grant HG005214 and NIMH training grant T32MH014592. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding was received for this study.
                Categories
                Research Article
                Biology
                Computational Biology
                Population Genetics
                Genetic Polymorphism
                Evolutionary Biology
                Population Genetics
                Genetic Drift
                Genetic Polymorphism
                Natural Selection
                Neutral Theory
                Evolutionary Theory
                Genetics
                Population Genetics
                Gene Flow
                Genetic Drift
                Genetic Polymorphism
                Natural Selection
                Neutral Theory
                Population Biology
                Population Genetics
                Genetic Polymorphism

                Uncategorized
                Uncategorized

                Comments

                Comment on this article