+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Emerging Roles of Fox Family Transcription Factors in Chromosome Replication, Organization, and Genome Stability


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The forkhead box (Fox) transcription factors (TFs) are widespread from yeast to humans. Their mutations and dysregulation have been linked to a broad spectrum of malignant neoplasias. They are known as critical players in DNA repair, metabolism, cell cycle control, differentiation, and aging. Recent studies, especially those from the simple model eukaryotes, revealed unexpected contributions of Fox TFs in chromosome replication and organization. More importantly, besides functioning as a canonical TF in cell signaling cascades and gene expression, Fox TFs can directly participate in DNA replication and determine the global replication timing program in a transcription-independent mechanism. Yeast Fox TFs preferentially recruit the limiting replication factors to a subset of early origins on chromosome arms. Attributed to their dimerization capability and distinct DNA binding modes, Fkh1 and Fkh2 also promote the origin clustering and assemblage of replication elements (replication factories). They can mediate long-range intrachromosomal and interchromosomal interactions and thus regulate the four-dimensional chromosome organization. The novel aspects of Fox TFs reviewed here expand their roles in maintaining genome integrity and coordinating the multiple essential chromosome events. These will inevitably be translated to our knowledge and new treatment strategies of Fox TF-associated human diseases including cancer.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Replication dynamics of the yeast genome.

          Oligonucleotide microarrays were used to map the detailed topography of chromosome replication in the budding yeast Saccharomyces cerevisiae. The times of replication of thousands of sites across the genome were determined by hybridizing replicated and unreplicated DNAs, isolated at different times in S phase, to the microarrays. Origin activations take place continuously throughout S phase but with most firings near mid-S phase. Rates of replication fork movement vary greatly from region to region in the genome. The two ends of each of the 16 chromosomes are highly correlated in their times of replication. This microarray approach is readily applicable to other organisms, including humans.
            • Record: found
            • Abstract: found
            • Article: not found

            Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase.

            The Forkhead box m1 (Foxm1) gene is critical for G(1)/S transition and essential for mitotic progression. However, the transcriptional mechanisms downstream of FoxM1 that control these cell cycle events remain to be determined. Here, we show that both early-passage Foxm1(-)(/)(-) mouse embryonic fibroblasts (MEFs) and human osteosarcoma U2OS cells depleted of FoxM1 protein by small interfering RNA fail to grow in culture due to a mitotic block and accumulate nuclear levels of cyclin-dependent kinase inhibitor (CDKI) proteins p21(Cip1) and p27(Kip1). Using quantitative chromatin immunoprecipitation and expression assays, we show that FoxM1 is essential for transcription of the mitotic regulatory genes Cdc25B, Aurora B kinase, survivin, centromere protein A (CENPA), and CENPB. We also identify the mechanism by which FoxM1 deficiency causes elevated nuclear levels of the CDKI proteins p21(Cip1) and p27(Kip1). We provide evidence that FoxM1 is essential for transcription of Skp2 and Cks1, which are specificity subunits of the Skp1-Cullin 1-F-box (SCF) ubiquitin ligase complex that targets these CDKI proteins for degradation during the G(1)/S transition. Moreover, early-passage Foxm1(-)(/)(-) MEFs display premature senescence as evidenced by high expression of the senescence-associated beta-galactosidase, p19(ARF), and p16(INK4A) proteins. Taken together, these results demonstrate that FoxM1 regulates transcription of cell cycle genes critical for progression into S-phase and mitosis.
              • Record: found
              • Abstract: found
              • Article: not found

              FOXM1: From cancer initiation to progression and treatment.

              The Forkhead box protein M1 (FOXM1) transcription factor is a regulator of myriad biological processes, including cell proliferation, cell cycle progression, cell differentiation, DNA damage repair, tissue homeostasis, angiogenesis and apoptosis. Elevated FOXM1 expression is found in cancers of the liver, prostate, brain, breast, lung, colon, pancreas, skin, cervix, ovary, mouth, blood and nervous system, suggesting it has an integral role in tumorigenesis. Recent research findings also place FOXM1 at the centre of cancer progression and drug sensitivity. In this review the involvement of FOXM1 in various aspects of cancer, in particular its role and regulation within the context of cancer initiation, progression, and cancer drug response, will be summarised and discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

                Author and article information

                20 January 2020
                January 2020
                : 9
                : 1
                : 258
                Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuan-Ming-Yuan West Road, Beijing 100193, China
                Author notes
                [* ]Correspondence: lou@ 123456cau.edu.cn ; Tel./Fax: +86-10-6273-4504
                Author information
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                : 30 December 2019
                : 14 January 2020

                dna replication,chromatin interaction,transcription-independent,chromosome domain,replication-transcription conflicts,cell fate decision


                Comment on this article