7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Peptides and genes coding for scorpion toxins that affect ion-channels

      Biochimie
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom.

          A novel peptide, scorpine, was isolated from the venom of the scorpion Pandinus imperator, with anti-bacterial activity and a potent inhibitory effect on the ookinete (ED(50) 0.7 microM) and gamete (ED(50) 10 microM) stages of Plasmodium berghei development. It has 75 amino acids, three disulfide bridges with a molecular mass of 8350 Da. Scorpine has a unique amino acid sequence, similar only to some cecropins in its N-terminal segment and to some defensins in its C-terminal region. Its gene was cloned from a cDNA library.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Scorpion toxins specific for Na+-channels

            Na+-channel specific scorpion toxins are peptides of 60-76 amino acid residues in length, tightly bound by four disulfide bridges. The complete amino acid sequence of 85 distinct peptides are presently known. For some toxins, the three-dimensional structure has been solved by X-ray diffraction and NMR spectroscopy. A constant structural motif has been found in all of them, consisting of one or two short segments of alpha-helix plus a triple-stranded beta-sheet, connected by variable regions forming loops (turns). Physiological experiments have shown that these toxins are modifiers of the gating mechanism of the Na+-channel function, affecting either the inactivation (alpha-toxins) or the activation (beta-toxins) kinetics of the channels. Many functional variations of these peptides have been demonstrated, which include not only the classical alpha- and beta-types, but also the species specificity of their action. There are peptides that bind or affect the function of Na+-channels from different species (mammals, insects or crustaceans) or are toxic to more than one group of animals. Based on functional and structural features of the known toxins, a classification containing 10 different groups of toxins is proposed in this review. Attempts have been made to correlate the presence of certain amino acid residues or 'active sites' of these peptides with Na+-channel functions. Segments containing positively charged residues in special locations, such as the five-residue turn, the turn between the second and the third beta-strands, the C-terminal residues and a segment of the N-terminal region from residues 2-11, seems to be implicated in the activity of these toxins. However, the uncertainty, and the limited success obtained in the search for the site through which these peptides bind to the channels, are mainly due to the lack of an easy method for expression of cloned genes to produce a well-folded, active peptide. Many scorpion toxin coding genes have been obtained from cDNA libraries and from polymerase chain reactions using fragments of scorpion DNAs, as templates. The presence of an intron at the DNA level, situated in the middle of the signal peptide, has been demonstrated.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Accuracies of ancestral amino acid sequences inferred by the parsimony, likelihood, and distance methods

                Bookmark

                Author and article information

                Journal
                Biochimie
                Elsevier BV
                03009084
                September 2000
                : 82
                : 9-10
                : 861-868
                Article
                10.1016/S0300-9084(00)01167-6
                b675304a-f176-49c7-8b7b-c301c93c66d9
                History

                Comments

                Comment on this article