34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Is the Species Flock Concept Operational? The Antarctic Shelf Case

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There has been a significant body of literature on species flock definition but not so much about practical means to appraise them. We here apply the five criteria of Eastman and McCune for detecting species flocks in four taxonomic components of the benthic fauna of the Antarctic shelf: teleost fishes, crinoids (feather stars), echinoids (sea urchins) and crustacean arthropods. Practical limitations led us to prioritize the three historical criteria (endemicity, monophyly, species richness) over the two ecological ones (ecological diversity and habitat dominance). We propose a new protocol which includes an iterative fine-tuning of the monophyly and endemicity criteria in order to discover unsuspected flocks. As a result nine « full » species flocks (fulfilling the five criteria) are briefly described. Eight other flocks fit the three historical criteria but need to be further investigated from the ecological point of view (here called « core flocks »). The approach also shows that some candidate taxonomic components are no species flocks at all. The present study contradicts the paradigm that marine species flocks are rare. The hypothesis according to which the Antarctic shelf acts as a species flocks generator is supported, and the approach indicates paths for further ecological studies and may serve as a starting point to investigate the processes leading to flock-like patterning of biodiversity.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          First insights into the biodiversity and biogeography of the Southern Ocean deep sea.

          Shallow marine benthic communities around Antarctica show high levels of endemism, gigantism, slow growth, longevity and late maturity, as well as adaptive radiations that have generated considerable biodiversity in some taxa. The deeper parts of the Southern Ocean exhibit some unique environmental features, including a very deep continental shelf and a weakly stratified water column, and are the source for much of the deep water in the world ocean. These features suggest that deep-sea faunas around the Antarctic may be related both to adjacent shelf communities and to those in other oceans. Unlike shallow-water Antarctic benthic communities, however, little is known about life in this vast deep-sea region. Here, we report new data from recent sampling expeditions in the deep Weddell Sea and adjacent areas (748-6,348 m water depth) that reveal high levels of new biodiversity; for example, 674 isopods species, of which 585 were new to science. Bathymetric and biogeographic trends varied between taxa. In groups such as the isopods and polychaetes, slope assemblages included species that have invaded from the shelf. In other taxa, the shelf and slope assemblages were more distinct. Abyssal faunas tended to have stronger links to other oceans, particularly the Atlantic, but mainly in taxa with good dispersal capabilities, such as the Foraminifera. The isopods, ostracods and nematodes, which are poor dispersers, include many species currently known only from the Southern Ocean. Our findings challenge suggestions that deep-sea diversity is depressed in the Southern Ocean and provide a basis for exploring the evolutionary significance of the varied biogeographic patterns observed in this remote environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes.

            The Southern Ocean around Antarctica is among the most rapidly warming regions on Earth, but has experienced episodic climate change during the past 40 million years. It remains unclear how ancient periods of climate change have shaped Antarctic biodiversity. The origin of antifreeze glycoproteins (AFGPs) in Antarctic notothenioid fishes has become a classic example of how the evolution of a key innovation in response to climate change can drive adaptive radiation. By using a time-calibrated molecular phylogeny of notothenioids and reconstructed paleoclimate, we demonstrate that the origin of AFGP occurred between 42 and 22 Ma, which includes a period of global cooling approximately 35 Ma. However, the most species-rich lineages diversified and evolved significant ecological differences at least 10 million years after the origin of AFGPs, during a second cooling event in the Late Miocene (11.6-5.3 Ma). This pattern indicates that AFGP was not the sole trigger of the notothenioid adaptive radiation. Instead, the bulk of the species richness and ecological diversity originated during the Late Miocene and into the Early Pliocene, a time coincident with the origin of polar conditions and increased ice activity in the Southern Ocean. Our results challenge the current understanding of the evolution of Antarctic notothenioids suggesting that the ecological opportunity that underlies this adaptive radiation is not linked to a single trait, but rather to a combination of freeze avoidance offered by AFGPs and subsequent exploitation of new habitats and open niches created by increased glacial and ice sheet activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas.

              Ecologists have long been fascinated by the flora and fauna of extreme environments. Physiological studies have revealed the extent to which lifestyle is constrained by low temperature but there is as yet no consensus on why the diversity of polar assemblages is so much lower than many tropical assemblages. The evolution of marine faunas at high latitudes has been influenced strongly by oceanic cooling during the Cenozoic and the associated onset of continental glaciations. Glaciation eradicated many shallow-water habitats, especially in the Southern Hemisphere, and the cooling has led to widespread extinction in some groups. While environmental conditions at glacial maxima would have been very different from those existing today, fossil evidence indicates that some lineages extend back well into the Cenozoic. Oscillations of the ice-sheet on Milankovitch frequencies will have periodically eradicated and exposed continental shelf habitat, and a full understanding of evolutionary dynamics at high latitude requires better knowledge of the links between the faunas of the shelf, slope and deep-sea. Molecular techniques to produce phylogenies, coupled with further palaeontological work to root these phylogenies in time, will be essential to further progress.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                2 August 2013
                : 8
                : 8
                : e68787
                Affiliations
                [1 ]UMR 7138 UPMC-MNHN-CNRS-IRD « Systématique, Adaptation, Évolution », Département Systématique et Évolution, Muséum national d'Histoire naturelle, CP 39, Paris, France
                [2 ]UMR 7208 UPMC-MNHN-CNRS-IRD « BOREA », Département Milieux et Peuplements Aquatiques, Muséum national d'Histoire naturelle, CP 26, Paris, France
                [3 ]UMS 2700 MNHN-CNRS « Outils et Méthodes de la Systématique Intégrative », Muséum national d'Histoire naturelle, CP 26, Paris, France
                [4 ]UMR 6540 CNRS – DIMAR « Diversité, évolution et écologie fonctionnelle marine », Université de la Méditerrannée Aix-Marseille II, Chemin de la Batterie des Lions, Marseille, France
                [5 ]Genoscope, Centre National de Séquençage, 2, rue Gaston Crémieux, CP5706, Évry, France
                [6 ]Royal Belgian Institute of Natural Sciences, Brussels, Belgium
                [7 ]Laboratoire de biologie marine. Université Libre de Bruxelles, Brussels, Belgium
                [8 ]Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
                [9 ]UMR 6282 CNRS-Université de Bourgogne « BIOGEOSCIENCES », Dijon, France
                [10 ]Biologie 1, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
                Institut Pluridisciplinaire Hubert Curien, France
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: GL BD. Performed the experiments: GL BD. Analyzed the data: GL BD. Contributed reagents/materials/analysis tools: GL BD. Wrote the paper: GL NA MCB CB FB RC A. Chenuil A. Couloux JPC CC CUA CDR G. Denys AD G. Duhamel ME JPF CG C. Havermans C. Held LH ACL PM COC BP PP NP SS TS CS BD.

                Article
                PONE-D-13-02814
                10.1371/journal.pone.0068787
                3732269
                23936311
                b675c556-e966-4c1f-a7f1-6cdc35bb86ef
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 January 2013
                : 2 June 2013
                Page count
                Pages: 10
                Funding
                This work was supported by the Centre national pour la Recherche scientifique (CNRS), the Muséum national d'Histoire naturelle (MNHN) and the Agence nationale pour la Recherche (ANR, grant number “ANTFLOCKS”, USAR 07-BLAN-0213-01 to G.L.), the “Service de Systématique Moléculaire” of the Muséum national d'Histoire naturelle (UMS 2700 CNRS), the “Consortium national de Recherche en Génomique”: it is part of the agreement number 2005/67 between the Genoscope and the Muséum national d'Histoire naturelle on the project ‘Macrophylogeny of life’ directed by G.L. This work was further supported by DFG project SCHU-1460-8 to C.S. and C.He., the Belgian Science Policy (“Action I” grant number MO/36/022 to C.U.A., “Action II” grant number WI/36/H04 to C.Ha., “PADDII” grant number SD/BA/02B to C.D.R.). This project is a contribution to the EBA-SCAR program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Ecology
                Ecological Environments
                Aquatic Environments
                Biodiversity
                Evolutionary Ecology
                Macroecology
                Marine Ecology
                Evolutionary Biology
                Evolutionary Ecology
                Marine Biology
                Marine Ecology
                Earth Sciences
                Marine and Aquatic Sciences
                Oceans
                Antarctic Ocean
                Marine Biology
                Marine Ecology
                Veterinary Science
                Animal Types
                Aquatic Animals

                Uncategorized
                Uncategorized

                Comments

                Comment on this article