40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of deletion of the prolactin receptor on ovarian gene expression

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prolactin (PRL) exerts pleiotropic physiological effects in various cells and tissues, and is mainly considered as a regulator of reproduction and cell growth. Null mutation of the PRL receptor (R) gene leads to female sterility due to a complete failure of embryo implantation. Pre-implantatory egg development, implantation and decidualization in the mouse appear to be dependent on ovarian rather than uterine PRLR expression, since progesterone replacement permits the rescue of normal implantation and early pregnancy. To better understand PRL receptor deficiency, we analyzed in detail ovarian and corpora lutea development of PRLR-/- females. The present study demonstrates that the ovulation rate is not different between PRLR+/+ and PRLR-/- mice. The corpus luteum is formed but an elevated level of apoptosis and extensive inhibition of angiogenesis occur during the luteal transition in the absence of prolactin signaling. These modifications lead to the decrease of LH receptor expression and consequently to a loss of the enzymatic cascades necessary to produce adequate levels of progesterone which are required for the maintenance of pregnancy.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice.

          PRL is an anterior pituitary hormone that, along with GH and PLs, forms a family of hormones that probably resulted from the duplication of an ancestral gene. The PRLR is also a member of a larger family, known as the cytokine class-1 receptor superfamily, which currently has more than 20 different members. PRLRs or binding sites are widely distributed throughout the body. In fact, it is difficult to find a tissue that does not express any PRLR mRNA or protein. In agreement with this wide distribution of receptors is the fact that now more than 300 separate actions of PRL have been reported in various vertebrates, including effects on water and salt balance, growth and development, endocrinology and metabolism, brain and behavior, reproduction, and immune regulation and protection. Clearly, a large proportion of these actions are directly or indirectly associated with the process of reproduction, including many behavioral effects. PRL is also becoming well known as an important regulator of immune function. A number of disease states, including the growth of different forms of cancer as well as various autoimmune diseases, appear to be related to an overproduction of PRL, which may act in an endocrine, autocrine, or paracrine manner, or via an increased sensitivity to the hormone. The first step in the mechanism of action of PRL is the binding to a cell surface receptor. The ligand binds in a two-step process in which site 1 on PRL binds to one receptor molecule, after which a second receptor molecule binds to site 2 on the hormone, forming a homodimer consisting of one molecule of PRL and two molecules of receptor. The PRLR contains no intrinsic tyrosine kinase cytoplasmic domain but associates with a cytoplasmic tyrosine kinase, JAK2. Dimerization of the receptor induces tyrosine phosphorylation and activation of the JAK kinase followed by phosphorylation of the receptor. Other receptor-associated kinases of the Src family have also been shown to be activated by PRL. One major pathway of signaling involves phosphorylation of cytoplasmic State proteins, which themselves dimerize and translocate to nucleus and bind to specific promoter elements on PRL-responsive genes. In addition, the Ras/Raf/MAP kinase pathway is also activated by PRL and may be involved in the proliferative effects of the hormone. Finally, a number of other potential mediators have been identified, including IRS-1, PI-3 kinase, SHP-2, PLC gamma, PKC, and intracellular Ca2+. The technique of gene targeting in mice has been used to develop the first experimental model in which the effect of the complete absence of any lactogen or PRL-mediated effects can be studied. Heterozygous (+/-) females show almost complete failure to lactate after the first, but not subsequent, pregnancies. Homozygous (-/-) females are infertile due to multiple reproductive abnormalities, including ovulation of premeiotic oocytes, reduced fertilization of oocytes, reduced preimplantation oocyte development, lack of embryo implantation, and the absence of pseudopregnancy. Twenty per cent of the homozygous males showed delayed fertility. Other phenotypes, including effects on the immune system and bone, are currently being examined. It is clear that there are multiple actions associated with PRL. It will be important to correlate known effects with local production of PRL to differentiate classic endocrine from autocrine/paracrine effects. The fact that extrapituitary PRL can, under some circumstances, compensate for pituitary PRL raises the interesting possibility that there may be effects of PRL other than those originally observed in hypophysectomized rats. The PRLR knockout mouse model should be an interesting system by which to look for effects activated only by PRL or other lactogenic hormones. On the other hand, many of the effects reported in this review may be shared with other hormones, cytokines, or growth factors and thus will be more difficult to study. (ABSTRACT TRUNCATED)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice.

            Targeted disruption of the murine p27(Kip1) gene caused a gene dose-dependent increase in animal size without other gross morphologic abnormalities. All tissues were enlarged and contained more cells, although endocrine abnormalities were not evident. Thymic hyperplasia was associated with increased T lymphocyte proliferation, and T cells showed enhanced IL-2 responsiveness in vitro. Thus, p27 deficiency may cause a cell-autonomous defect resulting in enhanced proliferation in response to mitogens. In the spleen, the absence of p27 selectively enhanced proliferation of hematopoietic progenitor cells. p27 deletion, like deletion of the Rb gene, uniquely caused neoplastic growth of the pituitary pars intermedia, suggesting that p27 and Rb function in the same regulatory pathway. The absence of p27 also caused an ovulatory defect and female sterility. Maturation of secondary ovarian follicles into corpora lutea, which express high levels of p27, was markedly impaired.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse.

              Mice carrying a germ-line null mutation of the prolactin receptor gene have been produced by gene targeting in embryonic stem cells. Heterozygous females showed almost complete failure of lactation attributable to greatly reduced mammary gland development after their first, but not subsequent, pregnancies. Homozygous females were sterile owing to a complete failure of embryonic implantation. Moreover, they presented multiple reproductive abnormalities, including irregular cycles, reduced fertilization rates, defective preimplantation embryonic development, and lack of pseudopregnancy. Half of the homozygous males were infertile or showed reduced fertility. This work establishes the prolactin receptor as a key regulator of mammalian reproduction, and provides the first total ablation model to further study the role of the prolactin receptor and its ligands.
                Bookmark

                Author and article information

                Journal
                Reprod Biol Endocrinol
                Reproductive biology and endocrinology : RB&E
                BioMed Central (London )
                1477-7827
                2003
                6 February 2003
                : 1
                : 12
                Affiliations
                [1 ]Molecular Endocrinology, INSERM U344 Faculté de Médecine Necker-Enfants Malades, 75730 Paris Cedex 15, France
                Article
                1477-7827-1-12
                10.1186/1477-7827-1-12
                151786
                12646063
                b67648ec-d0dd-44b8-9170-095703021c55
                Copyright © 2003 Grosdemouge et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
                History
                : 29 January 2003
                : 6 February 2003
                Categories
                Research

                Human biology
                fertility,ovary,physiology,mice,prolactin receptor
                Human biology
                fertility, ovary, physiology, mice, prolactin receptor

                Comments

                Comment on this article