34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The landscape of fear: the missing link to understand top-down and bottom-up controls of prey abundance?

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Identifying factors that may be responsible for regulating the size of animal populations is a cornerstone in understanding population ecology. The main factors that are thought to influence population size are either resources (bottom-up), or predation (top-down), or interspecific competition (parallel). However, there are highly variable and often contradictory results regarding their relative strengths and influence. These varied results are often interpreted as indicating "shifting control" among the three main factors, or a complex, nonlinear relationship among environmental variables, resource availability, predation, and competition. We argue here that there is a "missing link" in our understanding of predator-prey dynamics. We explore whether the landscape-of-fear model can help us clarify the inconsistencies and increase our understanding of the roles, extent, and possible interactions of top-down, bottom-up, and parallel factors on prey population abundance. We propose two main predictions derived from the landscape-of-fear model: (1) for a single species, we suggest that as the makeup of the landscape of fear changes from relatively safe to relatively risky, bottom-up impacts switch from strong to weak as top-down impacts go from weak to strong; (2) for two or more species, interspecific competitive interactions produce various combinations of bottom-up, top-down, and parallel impacts depending on the dominant competing species and whether the landscapes of fear are shared or distinctive among competing species. We contend that these predictions could successfully explain many of the complex and contradictory results of current research. We test some of these predictions based on long-term data for small mammals from the Chihuahuan Desert in the United States, and Mexico. We conclude that the landscape-of-fear model does provide reasonable explanations for many of the reported studies and should be tested further to better understand the effects of bottom-up, top-down, and parallel factors on population dynamics.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Article: not found

          Predation, Competition, and Prey Communities: A Review of Field Experiments

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Perceived predation risk reduces the number of offspring songbirds produce per year.

            Predator effects on prey demography have traditionally been ascribed solely to direct killing in studies of population ecology and wildlife management. Predators also affect the prey's perception of predation risk, but this has not been thought to meaningfully affect prey demography. We isolated the effects of perceived predation risk in a free-living population of song sparrows by actively eliminating direct predation and used playbacks of predator calls and sounds to manipulate perceived risk. We found that the perception of predation risk alone reduced the number of offspring produced per year by 40%. Our results suggest that the perception of predation risk is itself powerful enough to affect wildlife population dynamics, and should thus be given greater consideration in vertebrate conservation and management.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Predation risk affects reproductive physiology and demography of elk.

              Elk (Cervus elaphus) in the Greater Yellowstone Ecosystem alter patterns of aggregation, habitat selection, vigilance, and foraging in the presence of wolves (Canis lupus). Antipredator behaviors like these can reduce predation risk but are also likely to carry costs. Data from five elk populations studied for 16 site years showed that progesterone concentrations (from 1489 fecal samples) declined with the ratio of elk to wolves. In turn, progesterone concentrations were a good predictor of calf recruitment in the subsequent year. Together, these data suggest that wolves indirectly affect the reproductive physiology and the demography of elk through the costs of antipredator behavior.
                Bookmark

                Author and article information

                Journal
                Ecology
                Ecology
                0012-9658
                0012-9658
                May 2014
                : 95
                : 5
                Article
                10.1890/13-1083.1
                25000746
                b681a538-c3cc-4dc6-860b-7b04eda11f41
                History

                Comments

                Comment on this article