16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      v-SNARE transmembrane domains function as catalysts for vesicle fusion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vesicle fusion is mediated by an assembly of SNARE proteins between opposing membranes, but it is unknown whether transmembrane domains (TMDs) of SNARE proteins serve mechanistic functions that go beyond passive anchoring of the force-generating SNAREpin to the fusing membranes. Here, we show that conformational flexibility of synaptobrevin-2 TMD is essential for efficient Ca 2+-triggered exocytosis and actively promotes membrane fusion as well as fusion pore expansion. Specifically, the introduction of helix-stabilizing leucine residues within the TMD region spanning the vesicle’s outer leaflet strongly impairs exocytosis and decelerates fusion pore dilation. In contrast, increasing the number of helix-destabilizing, ß-branched valine or isoleucine residues within the TMD restores normal secretion but accelerates fusion pore expansion beyond the rate found for the wildtype protein. These observations provide evidence that the synaptobrevin-2 TMD catalyzes the fusion process by its structural flexibility, actively setting the pace of fusion pore expansion.

          DOI: http://dx.doi.org/10.7554/eLife.17571.001

          eLife digest

          Neurons signal to other cells by releasing chemicals known as neurotransmitters. The neurotransmitters are stored in the neuron in small membrane-bound compartments called vesicles. When a neuron receives an electrical impulse, this ultimately triggers the vesicles to fuse with the cell membrane and release their contents into the gap between the neurons. This process is known as exocytosis. Other cells called neuroendocrine cells, which can receive signals from neurons, also undergo exocytosis to release chemicals into the bloodstream.

          A group of membrane-bound proteins called SNAREs help a vesicle to fuse with the cell membrane. SNARE proteins are embedded in both the vesicle and cell membrane, and force them into close proximity. When the two membranes make contact, a small channel called the fusion pore forms and expands to release the vesicle’s contents out of the cell.

          Synaptobrevin-2 is a SNARE protein found in the vesicle membrane. The part of the protein that sits in the membrane is called the transmembrane domain; however, it is not clear whether this domain plays any role in membrane fusion.

          The transmembrane domain of synaptobrevin-2 is rich in certain amino acids that are thought to make it flexible, thereby allowing it to bend and tilt in the membrane. Dhara, Yarzagaray et al. altered these amino acids in such a way that made this domain either more or less flexible than in the normal protein. The results show that in both neurons and a type of neuroendocrine cell called chromaffin cells, exocytosis is significantly reduced and the fusion pores open more slowly when the transmembrane domain is less flexible. By contrast, exocytosis occurs normally when the transmembrane domain is more flexible; however, the fusion pore expands more rapidly than normal.

          These results suggest that the flexibility of the transmembrane domain of synaptobrevin-2 promotes membrane fusion and sets the pace at which the fusion pore expands. It is likely that the transmembrane domain disturbs the surrounding membrane in a way that enables these events to happen. Further work is needed to address whether this is the case.

          DOI: http://dx.doi.org/10.7554/eLife.17571.002

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Membrane fusion: grappling with SNARE and SM proteins.

          The two universally required components of the intracellular membrane fusion machinery, SNARE and SM (Sec1/Munc18-like) proteins, play complementary roles in fusion. Vesicular and target membrane-localized SNARE proteins zipper up into an alpha-helical bundle that pulls the two membranes tightly together to exert the force required for fusion. SM proteins, shaped like clasps, bind to trans-SNARE complexes to direct their fusogenic action. Individual fusion reactions are executed by distinct combinations of SNARE and SM proteins to ensure specificity, and are controlled by regulators that embed the SM-SNARE fusion machinery into a physiological context. This regulation is spectacularly apparent in the exquisite speed and precision of synaptic exocytosis, where synaptotagmin (the calcium-ion sensor for fusion) cooperates with complexin (the clamp activator) to control the precisely timed release of neurotransmitters that initiates synaptic transmission and underlies brain function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences.

            Gene-transfer vectors based on lentiviruses are distinguished by their ability to transduce non-dividing cells. The HIV-1 proteins Matrix, Vpr and Integrase have been implicated in the nuclear import of the viral genome in non-dividing cells. Here we show that a sequence within pol is also required in cis. It contains structural elements previously associated with the progress of reverse transcription in target cells. We restored these elements in cis within late-generation lentiviral vectors. The new vector transduced to a much higher efficiency several types of human primary cells, when both growing and growth-arrested, including haematopoietic stem cells assayed by long-term repopulation of NOD/SCID mice. On in vivo administration into SCID mice, the vector induced higher plasma levels of human clotting factor IX (F.IX) than non-modified vector. Our results indicate that nuclear translocation of the genome is a rate-limiting step in lentiviral infection of both dividing and non-dividing cells, and that it depends on protein and nucleic acid sequence determinants. Full rescue of this step in lentivirus-based vectors improves performance for gene-therapy applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells.

              In synapses, a rise in presynaptic intracellular calcium leads to secretory vesicle fusion in less than a millisecond, as indicated by the short delay from excitation to postsynaptic signal. In nonsynaptic secretory cells, studies at high time resolution have been limited by the lack of a detector as fast and sensitive as the postsynaptic membrane. Electrochemical methods may be sensitive enough to detect catecholamines released from single vesicles. Here, we show that under voltage-clamp conditions, stochastically occurring signals can be recorded from adrenal chromaffin cells using a carbon-fibre electrode as an electrochemical detector. These signals obey statistics characteristic for quantal release; however, in contrast to neuronal transmitter release, secretion occurs with a significant delay after short step depolarizations. Furthermore, we identify a pedestal or 'foot' at the onset of unitary events which may represent the slow leak of catecholamine molecules out of a narrow 'fusion pore' before the pore dilates for complete exocytosis.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                25 June 2016
                2016
                : 5
                : e17571
                Affiliations
                [1 ]deptInstitute for Physiology , Saarland University , Homburg, Germany
                [2 ]deptZentrum für Human- und Molekularbiologie , Saarland University , Homburg, Germany
                [3 ]deptGroup Nanoscale Cell Biology , Max-Planck-Institute for Biophysical Chemistry , Göttingen, Germany
                [4 ]deptComputational Biology, Department of Biology , Friedrich-Alexander University , Erlangen, Germany
                [5]Max Planck Institute for Biophysical Chemistry , Germany
                [6]Max Planck Institute for Biophysical Chemistry , Germany
                Author notes
                [†]

                These authors contributed equally to this work.

                [‡]

                These authors also contributed equally to this work.

                Author information
                http://orcid.org/0000-0002-9325-5162
                http://orcid.org/0000-0002-2497-1878
                Article
                17571
                10.7554/eLife.17571
                4972536
                27343350
                b6826a4e-79e9-4254-a98a-f2e73848097a
                © 2016, Dhara et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 05 May 2016
                : 24 June 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000781, European Research Council;
                Award ID: ADG322699
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft;
                Award ID: SFB1027
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft;
                Award ID: GRK1326
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft;
                Award ID: MO2312/1-1
                Award Recipient :
                Funded by: Homburger Forschungsförderungsprogramm von Universitätsklinikum des Saarlandes;
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Neuroscience
                Research Article
                Custom metadata
                2.5
                Structural flexibility of the synaptobrevin-2 transmembrane domain promotes membrane fusion.

                Life sciences
                neurotransmitter release,exocytosis,synaptobrevin,membrane fusion,mouse
                Life sciences
                neurotransmitter release, exocytosis, synaptobrevin, membrane fusion, mouse

                Comments

                Comment on this article