11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanisms of pyrethroid resistance inHaematobia irritans (Muscidae) from Mato Grosso do Sul state, Brazil Translated title: Mecanismos de resistência da Haematobia irritans (Muscidae) a piretróides em Mato Grosso do Sul, Brasil

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Horn fly resistance to pyrethroid insecticides occurs throughout Brazil, but knowledge about the involved mechanisms is still in an incipient stage. This survey was aimed to identify the mechanisms of horn fly resistance to cypermethrin in Mato Grosso do Sul state, Brazil. Impregnated filter paper bioassays using cypermethrin, synergized or not with piperonyl butoxide (PBO) and triphenyl phosphate (TPP), were conducted from March 2004 to June 2005 in horn fly populations (n = 33) from all over the state. All populations were highly resistant to cypermethrin, with resistance factors (RF) ranging from 89.4 to 1,020.6. Polymerase chain reaction (PCR) assays to detect the knockdown resistance (kdr) mutation also were performed in 16 samples. The kdr mutation was found in 75% of the tested populations, mostly with relatively low frequencies (<20%), and was absent in some highly resistant populations. Addition of TPP did not significantly reduce the LC50 in any population. However, PBO reduced LC50s above 40-fold in all tested populations, resulting in RFs ≤ 10 in most cases. Horn fly resistance to cypermethrin is widespread in the state, being primarily caused by an enhanced activity of P450 mono-oxygenases and secondarily by reduced target site sensitivity.

          Translated abstract

          Resistência da mosca-dos-chifres a inseticidas piretróides ocorre em todo o país, entretanto, o conhecimento sobre os mecanismos envolvidos é ainda incipiente. Este estudo objetivou identificar os mecanismos de resistência desta mosca à cipermetrina em Mato Grosso do Sul. Bioensaios utilizando papéis impregnados com cipermetrina, isoladamente ou sinergizada por butóxido de piperonila (PBO) ou trifenil fosfato (TPP), foram realizados de março∕2004 a junho∕2005 em 33 populações. Todas as populações apresentaram elevada resistência à cipermetrina, com fatores de resistência (FR) variando de 89,4 a 1.020,6. Ensaios de reação em cadeia da polimerase (PCR) visando a detecção de kdr(“knockdown resistance”) foram realizados em 16 amostras. A mutação kdr foi detectada em 75% das populações, geralmente em baixas frequências (<20%) e ausente em algumas populações resistentes. A adição de TPP não reduziu significativamente a CL50 em nenhuma população. Entretanto, o PBO reduziu em mais de 40 vezes a CL50 de todas as populações testadas, resultando em FR ≤ 10 na maioria dos casos. Resistência da mosca-dos-chifres à cipermetrina encontra-se disseminada no estado, sendo causada primariamente por um aumento da atividade de P450 mono-oxigenases e secundariamente pela redução da sensibilidade do sítio de ação do inseticida.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The effect of piperonyl butoxide on pyrethroid-resistance-associated esterases in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae).

          Pyrethroid resistance in field populations of Australian Helicoverpa armigera (Hübner) is primarily a consequence of the overproduction of esterase isoenzymes which metabolise and sequester pyrethroid insecticides. Biochemical studies have shown that pyrethroid-resistance-associated esterases in H armigera are inhibited by the insecticide synergist piperonyl butoxide (PBO). Esterase inhibition by PBO did not occur immediately after dosing, but exhibited maximum inhibition 3-4 h after dosage. Esterase activity subsequently recovered until full activity was restored by 24 h. Topical bioassays using a pre-treatment of PBO showed that maximum H armigera mortality was achieved with pre-treatment times corresponding to maximum esterase inhibition. These results demonstrated that, with correct temporal application, PBO can restore pyrethroid efficacy against H armigera. It would also be expected that restoration of efficacy with other conventional insecticides, currently compromised by esterase-based resistance mechanisms, would occur. Copyright 2005 Society of Chemical Industry.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mechanisms responsible for high levels of permethrin resistance in the house fly

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of the kdr and super-kdr sodium channel mutations in pyrethroid resistance: correlation of allelic frequency to resistance level in wild and laboratory populations of horn flies (Haematobia irritans).

              The kdr and super-kdr point mutations found in the insect sodium channel gene are postulated to confer knockdown resistance (kdr) to pyrethroids. Using an allele-specific PCR assay to detect these mutations in individual horn flies, Haematobia irritans (L.), we determined the allelic frequency of the kdr and super-kdr mutations in several wild and laboratory populations. Wild populations with very similar allelic frequencies had resistance levels that ranged widely from 3- to 18-fold relative to a susceptible population. Conversely, the kdr allele frequency in a lab population with 17-fold resistance was nearly double that found in a heavily pressured wild population with 18-fold resistance. We conclude that, although the kdr mutation confers significant levels of pyrethroid resistance, a substantial component of resistance in insecticidally pressured populations is conferred by mechanisms that are PBO-suppressible. High super-kdr allele frequencies were detected in two resistant lab populations, but in wild populations with equivalent resistance the super-kdr allele frequency was very low. Interestingly, in over 1200 individuals assayed, the super-kdr mutation was never detected in the absence of the kdr mutation.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                rbpv
                Revista Brasileira de Parasitologia Veterinária
                Rev. Bras. Parasitol. Vet.
                Colégio Brasileiro de Parasitologia Veterinária (Jaboticabal )
                1984-2961
                March 2013
                : 22
                : 1
                : 136-142
                Affiliations
                [1 ] Embrapa Pantanal Brasil
                [2 ] Universidade de São Paulo Brazil
                [3 ] Embrapa Gado de Corte Brasil
                [4 ] Instituto de Pesquisas Veterinárias Desidério Finamor – Fepagro∕IPVDF Brasil
                Article
                S1984-29612013000100136
                10.1590/S1984-29612013005000016
                b6892e77-a705-4089-b53a-cbd30552577b

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO Brazil

                Self URI (journal page): http://www.scielo.br/scielo.php?script=sci_serial&pid=1984-2961&lng=en
                Categories
                PARASITOLOGY
                VETERINARY SCIENCES

                Parasitology,General veterinary medicine
                Horn fly,insecticide resistance,metabolic resistance,kdr,Mosca-dos-chifres,resistência a inseticidas,resistência metabólica

                Comments

                Comment on this article