41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Discovery and full genome characterization of a new SIV lineage infecting red-tailed guenons ( Cercopithecus ascanius schmidti) in Kibale National Park, Uganda

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Human immunodeficiency virus (HIV) type 1 and 2, the causative agents of acquired immunodeficiency syndrome (AIDS), emerged from African non-human primates (NHPs) through zoonotic transmission of simian immunodeficiency viruses (SIV). Among African NHPs, the Cercopithecus genus contains the largest number of species known to harbor SIV. However, our understanding of the diversity and evolution of SIVs infecting this genus is limited by incomplete taxonomic and geographic sampling, particularly in East Africa. In this study, we screened blood specimens from red-tailed guenons ( Cercopithecus ascanius schmidti) from Kibale National Park, Uganda, for the presence of novel SIVs using unbiased deep-sequencing.

          Findings

          We describe and characterize the first full-length SIV genomes from wild red-tailed guenons in Kibale National Park, Uganda. This new virus, tentatively named SIVrtg_Kib, was detected in five out of twelve animals and is highly divergent from other Cercopithecus SIVs as well as from previously identified SIVs infecting red-tailed guenons, thus forming a new SIV lineage.

          Conclusions

          Our results show that the genetic diversity of SIVs infecting red-tailed guenons is greater than previously appreciated. This diversity could be the result of cross-species transmission between different guenon species or limited gene flow due to geographic separation among guenon populations.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination.

          The development of an effective human immunodeficiency virus type 1 (HIV-1) vaccine is likely to depend on knowledge of circulating variants of genes other than the commonly sequenced gag and env genes. In addition, full-genome data are particularly limited for HIV-1 subtype C, currently the most commonly transmitted subtype in India and worldwide. Likewise, little is known about sequence variation of HIV-1 in India, the country facing the largest burden of HIV worldwide. Therefore, the objective of this study was to clone and characterize the complete genome of HIV-1 from seroconverters infected with subtype C variants in India. Cocultured HIV-1 isolates were obtained from six seroincident individuals from Pune, India, and virtually full-length HIV-1 genomes were amplified, cloned, and sequenced from each. Sequence analysis revealed that five of the six genomes were of subtype C, while one was a mosaic of subtypes A and C, with multiple breakpoints in env, nef, and the 3' long terminal repeat as determined by both maximal chi2 analysis and phylogenetic bootstrapping. Sequences were compared for preservation of known cytotoxic T lymphocyte (CTL) epitopes. Compared with those of the HIV-1LAI sequence, 38% of well-defined CTL epitopes were identical. The proportion of nonconservative substitutions for Env, at 61%, was higher (P < 0.001) than those for Gag (24%), Pol (18%), and Nef (32%). Therefore, characterized CTL epitopes demonstrated substantial differences from subtype B laboratory strains, which were most pronounced in Env. Because these clones were obtained from Indian seroconverters, they are likely to facilitate vaccine-related efforts in India by providing potential antigens for vaccine candidates as well as for assays of vaccine responsiveness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations

            We present TranslatorX, a web server designed to align protein-coding nucleotide sequences based on their corresponding amino acid translations. Many comparisons between biological sequences (nucleic acids and proteins) involve the construction of multiple alignments. Alignments represent a statement regarding the homology between individual nucleotides or amino acids within homologous genes. As protein-coding DNA sequences evolve as triplets of nucleotides (codons) and it is known that sequence similarity degrades more rapidly at the DNA than at the amino acid level, alignments are generally more accurate when based on amino acids than on their corresponding nucleotides. TranslatorX novelties include: (i) use of all documented genetic codes and the possibility of assigning different genetic codes for each sequence; (ii) a battery of different multiple alignment programs; (iii) translation of ambiguous codons when possible; (iv) an innovative criterion to clean nucleotide alignments with GBlocks based on protein information; and (v) a rich output, including Jalview-powered graphical visualization of the alignments, codon-based alignments coloured according to the corresponding amino acids, measures of compositional bias and first, second and third codon position specific alignments. The TranslatorX server is freely available at http://translatorx.co.uk.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An African primate lentivirus (SIVsm) closely related to HIV-2.

              The ancestors of the human immunodeficiency viruses (HIV-1 and HIV-2) may have evolved from a reservoir of African nonhuman primate lentiviruses, termed simian immunodeficiency viruses (SIV). None of the SIV strains characterized so far are closely related to HIV-1. HIV-2, however, is closely related to SIV (SIVmac) isolated from captive rhesus macaques (Macaca mulatta). SIV infection of feral Asian macaques has not been demonstrated by serological surveys. Thus, macaques may have acquired SIV in captivity by cross-species transmission from an SIV-infected African primate. Sooty mangabeys (Cercocebus atys), an African primate species indigenous to West Africa, however, are infected with SIV (SIVsm) both in captivity and in the wild (P. Fultz, personal communication). We have molecularly cloned and sequenced SIVsm and report here that it is closely related to SIVmac and HIV-2. These results suggest that SIVsm has infected macaques in captivity and humans in West Africa and evolved as SIVmac and HIV-2, respectively.
                Bookmark

                Author and article information

                Contributors
                Journal
                Retrovirology
                Retrovirology
                Retrovirology
                BioMed Central
                1742-4690
                2014
                4 July 2014
                : 11
                : 55
                Affiliations
                [1 ]Wisconsin National Primate Research Center, 555 Science Dr, 53705 Madison, WI, USA
                [2 ]Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
                [3 ]Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
                [4 ]Makerere University, Kampala, Uganda
                [5 ]Department of Anthropology and Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
                [6 ]Department of Anthropology and School of Environment, McGill University, Montreal, QC, Canada
                [7 ]Wildlife Conservation Society, Bronx, New York, USA
                [8 ]Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
                Article
                1742-4690-11-55
                10.1186/1742-4690-11-55
                4226943
                24996566
                b68ee94a-db88-4cfd-a33f-0759551b585a
                Copyright © 2014 Lauck et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 18 February 2014
                : 24 June 2014
                Categories
                Short Report

                Microbiology & Virology
                simian immunodeficiency virus,siv,non-human primates,guenons,uganda,kibale national park

                Comments

                Comment on this article