2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The transduction channel of hair cells from the bull-frog characterized by noise analysis.

      The Journal of Physiology
      Action Potentials, Animals, Electricity, Hair Cells, Auditory, physiology, In Vitro Techniques, Ion Channels, Kinetics, Models, Neurological, Physical Stimulation, Rana catesbeiana, Saccule and Utricle

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Receptor currents in response to mechanical stimuli were recorded from hair cells in the excised epithelium of the bull-frog sacculus by the whole-cell, gigohm-seal voltage-clamp technique. The stimulus-dependent transduction current was separated from the cell's stimulus-independent K+ and Ca2+ currents; the K+ currents were blocked with an internal solution containing Cs+ while the Ca2+ current was reduced by holding the membrane potential below -70 mV. The temperature of the preparation was maintained at about 10 degrees C to slow the kinetics of the cells' transduction channels. Calibrated displacements of hair bundles of individual hair cells were made with a probe coupled by suction to the kinociliary bulb and moved with a piezoelectricbimorph stimulator. The root mean square noise of probe motion was less than 2 nm. The mean, I, and the variance, sigma 2, of the receptor current were measured from the response to saturating (+/- 0.5 micron) displacements of the hair bundle. I was corrected for current offsets and sigma 2 for the transduction-independent background variance. The relation between sigma 2 and I is consistent with the predictions of a two-conductance-state model of the transduction channel, a model having only one non-zero conductance state. The relation between sigma 2 and I was fitted by the equation sigma 2 = Ii-I2/N, where N is the number of transduction channels in the cell and i is the current through a single open channel. The conductance of the transduction channel is approximately ohmic with a reversal potential near 0 mV. The estimated conductance of a single transduction channel, gamma, is 12.7 +/- 2.7 pS (mean +/- S.D.; n = 18) at 10 degrees C. gamma is independent of the maximum transduction conductance of the cell, Gmax. The number of transduction channels, N, is proportional to Gmax. N ranges from 7 to 280 in cells with Gmax ranging from 0.08 to 2.48 nS. The largest values of N correspond to a few, perhaps four, active transduction channels per stereocilium. Control experiments show that transduction by the hair cell of two artifactual sources of hair-bundle stimulation, noisy or discontinuous motion of the probe, do not contribute substantially to the measured variance, sigma 2. Displacement-response curves are generally sigmoidal and symmetrical; they reasonably fit the predictions of a two-kinetic-state model, comprising one open state and one closed state. The estimated displacement-sensitive free energy, Z, is 5.7 +/- 1.1 kcal/mol micron (mean +/- S.D., n = 18).(ABSTRACT TRUNCATED AT 400 WORDS)

          Related collections

          Author and article information

          Journal
          2432221
          1182755
          10.1113/jphysiol.1986.sp016113

          Chemistry
          Action Potentials,Animals,Electricity,Hair Cells, Auditory,physiology,In Vitro Techniques,Ion Channels,Kinetics,Models, Neurological,Physical Stimulation,Rana catesbeiana,Saccule and Utricle

          Comments

          Comment on this article