40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pallial and subpallial morphological subdivisions of the developing chicken telencephalon were examined by means of gene markers, compared with their expression pattern in the mouse. Nested expression domains of the genes Dlx-2 and Nkx-2.1, plus Pax-6-expressing migrated cells, are characteristic for the mouse subpallium. The genes Pax-6, Tbr-1, and Emx-1 are expressed in the pallium. The pallio-subpallial boundary lies at the interface between the Tbr-1 and Dlx-2 expression domains. Differences in the expression topography of Tbr-1 and Emx-1 suggest the existence of a novel "ventral pallium" subdivision, which is an Emx-1-negative pallial territory intercalated between the striatum and the lateral pallium. Its derivatives in the mouse belong to the claustroamygdaloid complex. Chicken genes homologous to these mouse genes are expressed in topologically comparable patterns during development. The avian subpallium, called "paleostriatum," shows nested Dlx-2 and Nkx-2.1 domains and migrated Pax-6-positive neurons; the avian pallium expresses Pax-6, Tbr-1, and Emx-1 and also contains a distinct Emx-1-negative ventral pallium, formed by the massive domain confusingly called "neostriatum." These expression patterns extend into the septum and the archistriatum, as they do into the mouse septum and amygdala, suggesting that the concepts of pallium and subpallium can be extended to these areas. The similarity of such molecular profiles in the mouse and chicken pallium and subpallium points to common sets of causal determinants. These may underlie similar histogenetic specification processes and field homologies, including some comparable connectivity patterns.

          Related collections

          Author and article information

          Journal
          J Comp Neurol
          The Journal of comparative neurology
          Wiley
          0021-9967
          0021-9967
          Aug 28 2000
          : 424
          : 3
          Affiliations
          [1 ] Department of Morphological Sciences, Medical School, University of Murcia, E30100 Murcia, Spain. puelles@fcu.um.es
          Article
          10.1002/1096-9861(20000828)424:3<409::AID-CNE3>3.0.CO;2-7
          10.1002/1096-9861(20000828)424:3<409::aid-cne3>3.0.co;2-7
          10906711
          b6a01d7c-d798-4e42-bf29-262b7da0ad6f
          Copyright 2000 Wiley-Liss, Inc.
          History

          Comments

          Comment on this article