32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antibiotic Resistance and the Biology of History

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Beginning in the 1940s, mass production of antibiotics involved the industrial-scale growth of microorganisms to harvest their metabolic products. Unfortunately, the use of antibiotics selects for resistance at answering scale. The turn to the study of antibiotic resistance in microbiology and medicine is examined, focusing on the realization that individual therapies targeted at single pathogens in individual bodies are environmental events affecting bacterial evolution far beyond bodies. In turning to biological manifestations of antibiotic use, sciences fathom material outcomes of their own previous concepts. Archival work with stored soil and clinical samples produces a record described here as ‘the biology of history’: the physical registration of human history in bacterial life. This account thus foregrounds the importance of understanding both the materiality of history and the historicity of matter in theories and concepts of life today.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Sampling the antibiotic resistome.

          Microbial resistance to antibiotics currently spans all known classes of natural and synthetic compounds. It has not only hindered our treatment of infections but also dramatically reshaped drug discovery, yet its origins have not been systematically studied. Soil-dwelling bacteria produce and encounter a myriad of antibiotics, evolving corresponding sensing and evading strategies. They are a reservoir of resistance determinants that can be mobilized into the microbial community. Study of this reservoir could provide an early warning system for future clinically relevant antibiotic resistance mechanisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The antibiotic resistome: the nexus of chemical and genetic diversity.

            Over the millennia, microorganisms have evolved evasion strategies to overcome a myriad of chemical and environmental challenges, including antimicrobial drugs. Even before the first clinical use of antibiotics more than 60 years ago, resistant organisms had been isolated. Moreover, the potential problem of the widespread distribution of antibiotic resistant bacteria was recognized by scientists and healthcare specialists from the initial use of these drugs. Why is resistance inevitable and where does it come from? Understanding the molecular diversity that underlies resistance will inform our use of these drugs and guide efforts to develop new efficacious antibiotics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              What are the consequences of the disappearing human microbiota?

              Humans and our ancestors have evolved since the most ancient times with a commensal microbiota. The conservation of indicator species in a niche-specific manner across all of the studied human population groups suggests that the microbiota confer conserved benefits on humans. Nevertheless, certain of these organisms have pathogenic properties and, through medical practices and lifestyle changes, their prevalence in human populations is changing, often to an extreme degree. In this Essay, we propose that the disappearance of these ancestral indigenous organisms, which are intimately involved in human physiology, is not entirely beneficial and has consequences that might include post-modern conditions such as obesity and asthma.
                Bookmark

                Author and article information

                Contributors
                Journal
                Body Soc
                Body Soc
                BOD
                spbod
                Body & Society
                SAGE Publications (Sage UK: London, England )
                1357-034X
                1460-3632
                08 July 2016
                December 2016
                : 22
                : 4 , Special Issue: The New Biologies: Epigenetics, the Microbiome and Immunities
                : 19-52
                Affiliations
                [1-1357034X14561341]University of California
                Author notes
                [*]Hannah Landecker. Email: landecker@ 123456soc.ucla.edu Extra material: http://theoryculturesociety.org/
                Article
                10.1177_1357034X14561341
                10.1177/1357034X14561341
                5390938
                28458609
                b6a4dd6e-ce06-4c42-a110-0241b0a0a0ec
                © The Author(s) 2016

                This article is distributed under the terms of the Creative Commons Attribution 3.0 License ( http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                Categories
                Articles

                antibiotic resistance,antibiotics,biology,biomedicine,biopolitics,biotechnology,social studies of science

                Comments

                Comment on this article