Blog
About

63
views
0
recommends
+1 Recommend
0 collections
    5
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Review: Inflammatory Process in Alzheimer's Disease, Role of Cytokines

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer's disease (AD) is the most common neurodegenerative disorder to date. Neuropathological hallmarks are β -amyloid (A β ) plaques and neurofibrillary tangles, but the inflammatory process has a fundamental role in the pathogenesis of AD. Inflammatory components related to AD neuroinflammation include brain cells such as microglia and astrocytes, the complement system, as well as cytokines and chemokines. Cytokines play a key role in inflammatory and anti-inflammatory processes in AD. An important factor in the onset of inflammatory process is the overexpression of interleukin (IL)-1, which produces many reactions in a vicious circle that cause dysfunction and neuronal death. Other important cytokines in neuroinflammation are IL-6 and tumor necrosis factor (TNF)- α . By contrast, other cytokines such as IL-1 receptor antagonist (IL-1ra), IL-4, IL-10, and transforming growth factor (TGF)- β can suppress both proinflammatory cytokine production and their action, subsequently protecting the brain. It has been observed in epidemiological studies that treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) decreases the risk for developing AD. Unfortunately, clinical trials of NSAIDs in AD patients have not been very fruitful. Proinflammatory responses may be countered through polyphenols. Supplementation of these natural compounds may provide a new therapeutic line of approach to this brain disorder.

          Related collections

          Most cited references 274

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation and Alzheimer's disease.

          Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer's disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid beta peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biologic basis for interleukin-1 in disease.

             C Dinarello (1996)
            To understand the role of the proinflammatory cytokine interleukin-1 (IL-1) in disease, investigators have studied how production of the different members of the IL-1 family is controlled, the various biologic activities of IL-1, the distinct and various functions of the IL-1 receptor (IL-1R) family, and the complexity of intracellular signaling. Mice deficient in IL-1Beta, IL-1Beta converting enzyme, and IL-1R type I have also been studied. Humans have been injected with IL-1 (either IL-1alpha or IL-1beta) for enhancing bone marrow recovery and for cancer treatment. The IL-1-specific receptor antagonist (IL-1Ra) has also been tested in clinical trials. The topics discussed in this review include production and activities of IL-1 and IL-1Ra molecules, the effects of IL-1 on gene expression, functions of cell-bound and soluble IL-1 receptors, the importance of the IL-1R accessory protein, newly discovered signal transduction pathways, naturally occurring cytokines limiting IL-1 production or activity, the effects of blocking cyclooxygenase and nitric oxide, and the outcomes of IL-1 and IL-1 Ra in human trials. Special attention is paid to IL-1beta converting enzyme and programmed cell death. The roles of IL-1 in hematopoiesis, leukemia, atherosclerosis, and growth of solid tumors are also discussed. This is a lengthy review, with 586 citations chosen to illustrate specific areas of interest rather than a compendium of references. At the end of each section, a short commentary summarizes what the author considers established or controversial topics linking the biology of IL-1 to mechanisms of disease.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Chemokines--chemotactic cytokines that mediate inflammation.

                Bookmark

                Author and article information

                Journal
                ScientificWorldJournal
                ScientificWorldJournal
                TSWJ
                The Scientific World Journal
                The Scientific World Journal
                1537-744X
                2012
                1 April 2012
                : 2012
                Affiliations
                Department of Food and Nutrition Technology, St. Anthony Catholic University, Campus de Los Jerónimos, s/n Guadalupe, 30107 Murcia, Spain
                Author notes
                *Juana Maria Morillas-Ruiz: jmmorillas@ 123456pdi.ucam.edu

                Academic Editor: Toshio Kawamata

                Article
                10.1100/2012/756357
                3330269
                22566778
                Copyright © 2012 J. M. Rubio-Perez and J. M. Morillas-Ruiz.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Review Article

                Uncategorized

                Comments

                Comment on this article