41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative Small RNA Analysis of Pollen Development in Autotetraploid and Diploid Rice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MicroRNAs (miRNAs) play key roles in plant reproduction. However, knowledge on microRNAome analysis in autotetraploid rice is rather limited. Here, high-throughput sequencing technology was employed to analyze miRNAomes during pollen development in diploid and polyploid rice. A total of 172 differentially expressed miRNAs (DEM) were detected in autotetraploid rice compared to its diploid counterpart, and 57 miRNAs were specifically expressed in autotetraploid rice. Of the 172 DEM, 115 and 61 miRNAs exhibited up- and down-regulation, respectively. Gene Ontology analysis on the targets of up-regulated DEM showed that they were enriched in transport and membrane in pre-meiotic interphase, reproduction in meiosis, and nucleotide binding in single microspore stage. osa-miR5788 and osa-miR1432-5p_R+1 were up-regulated in meiosis and their targets revealed interaction with the meiosis-related genes, suggesting that they may involve in the genes regulation associated with the chromosome behavior. Abundant 24 nt siRNAs associated with transposable elements were found in autotetraploid rice during pollen development; however, they significantly declined in diploid rice, suggesting that 24 nt siRNAs may play a role in pollen development. These findings provide a foundation for understanding the effect of polyploidy on small RNA expression patterns during pollen development that cause pollen sterility in autotetraploid rice.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs

          MicroRNAs (miRNAs) are a class of small non-coding RNAs with a critical role in development and environmental responses. Efficient and reliable detection of miRNAs is an essential step towards understanding their roles in specific cells and tissues. However, gel-based assays currently used to detect miRNAs are very limited in terms of throughput, sensitivity and specificity. Here we provide protocols for detection and quantification of miRNAs by RT-PCR. We describe an end-point and real-time looped RT-PCR procedure and demonstrate detection of miRNAs from as little as 20 pg of plant tissue total RNA and from total RNA isolated from as little as 0.1 μl of phloem sap. In addition, we have developed an alternative real-time PCR assay that can further improve specificity when detecting low abundant miRNAs. Using this assay, we have demonstrated that miRNAs are differentially expressed in the phloem sap and the surrounding vascular tissue. This method enables fast, sensitive and specific miRNA expression profiling and is suitable for facilitation of high-throughput detection and quantification of miRNA expression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding mechanisms of novel gene expression in polyploids.

            Polyploidy has long been recognized as a prominent force shaping the evolution of eukaryotes, especially flowering plants. New phenotypes often arise with polyploid formation and can contribute to the success of polyploids in nature or their selection for use in agriculture. Although the causes of novel variation in polyploids are not well understood, they could involve changes in gene expression through increased variation in dosage-regulated gene expression, altered regulatory interactions, and rapid genetic and epigenetic changes. New research approaches are being used to study these mechanisms and the results should provide a more complete understanding of polyploidy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development.

              The functions of the vast majority of genes encoding R2R3 MYB domain proteins remain unknown. The closely related MYB33 and MYB65 genes of Arabidopsis thaliana have high sequence similarity to the barley (Hordeum vulgare) GAMYB gene. T-DNA insertional mutants were isolated for both genes, and a myb33 myb65 double mutant was defective in anther development. In myb33 myb65 anthers, the tapetum undergoes hypertrophy at the pollen mother cell stage, resulting in premeiotic abortion of pollen development. However, myb33 myb65 sterility was conditional, where fertility increased both under higher light or lower temperature conditions. Thus, MYB33/MYB65 facilitate, but are not essential for, anther development. Neither single mutant displayed a phenotype, implying that MYB33 and MYB65 are functionally redundant. Consistent with functional redundancy, promoter-beta-glucuronidase (GUS) fusions of MYB33 and MYB65 gave identical expression patterns in flowers (sepals, style, receptacle, anther filaments, and connective but not in anthers themselves), shoot apices, and root tips. By contrast, expression of a MYB33:GUS translational fusion in flowers was solely in young anthers (consistent with the male sterile phenotype), and no staining was seen in shoot meristems or root tips. A microRNA target sequence is present in the MYB genes, and mutating this sequence in the MYB33:GUS fusion results in an expanded expression pattern, in tissues similar to that observed in the promoter-GUS lines, implying that the microRNA target sequence is restricting MYB33 expression. Arabidopsis transformed with MYB33 containing the mutated microRNA target had dramatic pleiotrophic developmental defects, suggesting that restricting MYB33 expression, especially in the shoot apices, is essential for proper plant development.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                12 April 2016
                April 2016
                : 17
                : 4
                : 499
                Affiliations
                State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; andyslee@ 123456126.com (X.L.); qasim@ 123456scau.edu.cn (M.Q.S.); wjw0106@ 123456126.com (J.W.); wanglan@ 123456scau.edu.cn (L.W.)
                Author notes
                [* ]Correspondence: xdliu@ 123456scau.edu.cn (X.L.); yglu@ 123456scau.edu.cn (Y.L.); Tel./Fax: +86-20-3829-4893 (X.L. & Y.L.)
                [†]

                These authors contributed equally to this work.

                Article
                ijms-17-00499
                10.3390/ijms17040499
                4848955
                27077850
                b6cbef9f-9909-4b44-99af-9c040d6653cd
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 December 2015
                : 28 March 2016
                Categories
                Article

                Molecular biology
                meiosis,micrornas,polyploidy,pre-meiotic interphase (pma),single microspore stage (scp),sirnas

                Comments

                Comment on this article